• About Us
  • News
  • Events
  • Student Affairs
  • Career Development Centre
  • Students@Engineering
  • Academics
    • Programmes
      • Undergraduate Programmes
      • Graduate Programmes
        • Masters Programmes
        • Doctoral Programmes
    • Teaching Laboratories
    • Virtual Laboratories
    • Project Based Learning
  • Admission
    • Undergraduate Admission
    • Graduate Admission
      • Masters Admissions
      • Doctoral Admissions
  • People
  • Research
  • About Us
  • News
  • Events
  • Office of the Dean of Students
  • Career Development Centre
  • Students@Engineering
  • Academics
    Programmes Teaching Laboratories Virtual Laboratories Project Based Learning
  • Admission
    Undergraduate Admission Graduate Admission Doctoral Admission
  • People
  • Research

A hardware acceleration/simulation platform based on multiple boards

School of Engineering and Applied Science

ABSTRACT

Building a (programmable) hardware acceleration/simulation platform based on multiple boards (FPGA or Arduino boards), for emulating neural networks/algorithms. (Initial case study: Palm Associative Memory)

Description
This project will attempt to create an indigenous expandable multi-board (FPGA or Arduino boards) acceleration/simulation platform for (implementing/emulating) neural network/algorithm. The project would involve the development of the algorithm-specific computational architecture (coded in Verilog HDL) within each board (also referred to as the Processing Node in the figure below), and algorithm-specific inter-board communication scheme (coded in Verilog HDL). The computational architecture (and the communication scheme) would be programmable, in terms of the number of neurons & synapses, function of a neuron, and possibly in terms of neural connectivity/topology. Improvements in performance, due to the possible distribution of the sub-operations of the algorithm over the FPGA or Arduino boards, and parallelization within each FPGA board (not possible in Arduino board), could be explored.
Related outcomes/deliverables would be: Code repository (implementations of) various neural networks, such as: MLP NN, RBF NN, Hopfield, BAM, etc., onto multiple boards (FPGA or Arduino boards), that can be used by SEAS students for other courses, such as: Machine Learning, etc.

Other Members: Pal Nikola, Dev Mehta 

Keywords: VLSI Systems: Digital CMOS VLSI Circuits and Sub-systems

School of Engineering and Applied Science

Ahmedabad University
Central Campus
Navrangpura, Ahmedabad 380009
Gujarat, India

[email protected]
+91.79.61911100

  • About Ahmedabad
  • Our Purpose
  • Programmes
  • Admission
  • Research
  • Resources
  • Brochures
  • News
  • Events
  • People
  • Careers
  • Contact

Auris

COPYRIGHT AHMEDABAD UNIVERSITY 2025

CONNECT WITH US

Download Brochure

Please enter information in the form below. The download will start automatically on submission of the form.

Download Brochure

Please enter information in the form below. The download will start automatically on submission of the form.