• About Us
  • News
  • Events
  • Student Affairs
  • Career Development Centre
  • Students@Engineering
  • Academics
    • Programmes
      • Undergraduate Programmes
      • Graduate Programmes
        • Masters Programmes
        • Doctoral Programmes
    • Teaching Laboratories
    • Virtual Laboratories
    • Project Based Learning
  • Admission
    • Undergraduate Admission
    • Graduate Admission
      • Masters Admissions
      • Doctoral Admissions
  • People
  • Research
  • About Us
  • News
  • Events
  • Office of the Dean of Students
  • Career Development Centre
  • Students@Engineering
  • Academics
    Programmes Teaching Laboratories Virtual Laboratories Project Based Learning
  • Admission
    Undergraduate Admission Graduate Admission Doctoral Admission
  • People
  • Research

23 April 2021

Research Paper of Professor Dhaval Patel is published by renowned IEEE Transactions on Wireless Communications



“Performance Analysis of NOMA in Vehicular Communications over i.n.i.d Nakagami-m Fading Channels” written by Professor Dhaval Patel is published in the renowned  “IEEE Transactions on Wireless Communications”. 

This paper investigates non-orthogonal multiple access (NOMA) performance in vehicular networks where a base station (BS) communicates with the vehicles moving away from the BS with single-input multiple-output. To combine the signals received at the antennas, diversity combining techniques such as maximal ratio combining (MRC) and selection combining (SC) are performed at the receiver of each vehicle. However, in practice, the expected performance from the diversity techniques may not be achieved due to the fact that all the diversity branches are not independent and identically distributed (i.i.d) all the time. In this context, analytical expressions of the outage probability and ergodic sum-rate are derived for the considered vehicular networks with the assumption of independent but not necessarily identically distributed (i.n.i.d) Nakagami-m fading channels. The performance analysis of NOMA vehicular networks is also extended for multiple-input multiple-output antenna configurations and evaluated in the presence of successive interference cancellation (SIC) error propagation. The obtained analytical results are validated by Monte Carlo simulations. Furthermore, the performance of NOMA is verified with conventional orthogonal multiple access (OMA) for fading parameter m = 1 and m = 2 with perfect channel knowledge and channel estimation. Numerical results show that NOMA outperforms the conventional OMA by approximately 20% and has a high sum rate with i.n.i.d as well as i.i.d channel consideration. However, i.n.i.d consideration degrades the performance of NOMA and OMA as the diversity gain achieved with i.n.i.d consideration is less as compared to i.i.d consideration. The performance further deteriorates with SIC error and channel estimation.

Related News

Industrial Visit to RBD Engineers to Understand Products, Processes, and Challenges in Operations

Kshitij Kumbar Secures Admission to Stanford University

‘Indian Grey Hornbills are Birds Without Borders’

School of Engineering and Applied Science

Ahmedabad University
Central Campus
Navrangpura, Ahmedabad 380009
Gujarat, India

[email protected]
+91.79.61911100

  • About Ahmedabad
  • Our Purpose
  • Programmes
  • Admission
  • Research
  • Resources
  • Brochures
  • News
  • Events
  • People
  • Careers
  • Contact

Auris

COPYRIGHT AHMEDABAD UNIVERSITY 2025

CONNECT WITH US

Download Brochure

Please enter information in the form below. The download will start automatically on submission of the form.

Download Brochure

Please enter information in the form below. The download will start automatically on submission of the form.