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ABSTRACT The deployment of 5G NR-based Cellular-V2X, i.e., the NR-V2X standard, is a promising
solution to meet the increasing demand for vehicular data transmission in the low-frequency spectrum. The
high throughput requirement of NR-V2X users can be overcome by extending it to utilize the sub-6 GHz
unlicensed spectrum, coexisting with Wi-Fi 6E, thus increasing the overall spectrum availability. Most
existing works on coexistence rely on rule-based approaches or classical machine learning algorithms.
These approaches may fall short in real-time environments where adaptive decision-making is required.
In this context, we introduce a novel Deep Reinforcement learning (DRL) based framework for 5G NR-
V2X (mode-1 and mode-2) and Wi-Fi 6E coexistence. We propose an algorithm to dynamically adjust the
transmission time of the 5G NR-V2X (for mode-1) or Wi-Fi 6E (for mode-2), based on the Wi-Fi and V2X
traffic, to maximize the overall throughput of both systems. The proposed algorithm is implemented through
extensive simulations using the Network Simulator-3 (ns-3), integrated with a custom Deep Reinforcement
Learning (DRL) framework developed using OpenAIGym. This closed-loop integration enables realistic,
dynamic interaction between the learning agent and high-fidelity network environments, representing a
novel simulation setup for studying NR-V2X and Wi-Fi coexistence. The results show that when employing
DRL on NR-V2X and Wi-Fi coexistence, the average data rates for Vehicular User Equipments (VUEs)
and Wi-Fi User Equipments (WUEs) improve by ∼ 24% and 23%, respectively, as compared to the
static method; and even higher improvement when compared to the existing RL-based LTE-V2X and
Wi-Fi coexistence approach. Additionally, we analyzed the impact of NR-V2X coexistence on the Wi-Fi
subsystem under mode-1 and mode-2 communications. Our findings indicate that mode-1 communication
demands more spectrum resources than mode-2, leading to a performance compromise for Wi-Fi.

INDEX TERMS Deep Reinforcement Learning, C-V2X, 5G NR-V2X, Spectrum Coexistence, Wi-Fi 6E.

I. Introduction
Intelligent Transportation Systems (ITS) has emerged as a
critical solution for enhancing vehicular safety and reduc-
ing accidents through the integration of advanced commu-
nication technologies and real-time decision-making. The
Cellular-Vehicle to-everything (C-V2X) systems play a sig-
nificant role in supporting vehicular communication in ITS.
C-V2X encompasses two key cellular vehicular standards [1]
i.e., LTE-V2X and 5G NR-V2X.

A key challenge faced by C-V2X systems lies in facilitat-
ing high-data transmission amid growing vehicular density
and escalating vehicular data volumes, including video and
LIDAR data.

Moreover, in 2020, the Federal Communication Commis-
sion (FCC) changed the ITS service spectrum band allocation
from 5.855 - 5.925 GHz to 5.895 − 5.925 GHz, i.e., reducing
the spectrum from 70 MHz to 30 MHz [2]. Consequently,

meeting the high spectrum requirements of C-V2X has
become challenging. The FCC [2] in the US and regulators
in Europe [3] allowed unlicensed operations in the 6 GHz
band. Wi-Fi, being one of the key unlicensed technologies,
is entering the 6 GHz band as per the IEEE 802.11 Working
Group [4]. The Wi-Fi 6, i.e., 802.11ax in the 6 GHZ band,
is also stated as Wi-Fi 6E. The C-V2X technology can
potentially coexist with Wi-Fi 6E in the sub-6GHz spectrum
to satisfy spectrum needs.

A. Current state of the art and Motivation
Several works have addressed the coexistence of Wi-Fi
with LTE-based technology. For instance, an adaptive listen-
before-talk (LBT) based algorithm was proposed in [5],
requiring LTE-U to know the channel at the subframe edge
and select a new idle channel. A fair LBT algorithm was
also suggested in [6], which assigns an appropriate idle
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period to Wi-Fi to ensure transmission and integrate system
throughput with fairness between LTE-U and Wi-Fi. The
LTE-U forum proposed the carrier sensing and adaptive
duty cycle-based transmission algorithm (CAST) [7], where
the small cell performs channel sensing on all available
unlicensed channels and selects the idlest channel based on
media activity observations.

However, LTE-Wi-Fi coexistence mechanisms fall short
of meeting the stringent requirements of next-generation
vehicular networks. Hence, the 5G NR-based Cellular-V2X
standard was advanced in 3GPP Rel. 16 [8].

In 2021, Naik et. al. in [9] proposed the study of modeling
the impact of the multi-user OFDMA feature introduced
in 802.11ax on coexisting with 5G NR-U. Similarly, a
framework to find the optimal fairness parameters for 5G-
NR U, coexisting with Wi-Fi, was proposed in [10]. Later,
in the context of V2X, a decentralized coexistence protocol
for V2X and Wi-fi was proposed in [11]. Additionally,
mitigation techniques for co-channel co-existence of 802.11p
with NR-V2X SideLink (SL) mode were studied in [12]. Yet,
these are static techniques and cannot update the channel
access of either of the systems dynamically.

With the rise of learning-based signal processing, data-
driven methods have attracted significant interest for C-V2X
(LTE-V2X, NR-V2X) and Wi-Fi coexistence scenarios [13].
Leveraging their strong learning capabilities, several studies
have applied Machine Learning (ML) to address coexistence
challenges. For example, [14] proposed a Q-learning-based
duty cycle adaptation algorithm for a single unlicensed chan-
nel, achieving optimal convergence. Similarly, [15] presented
a Q-learning approach for LTE-U and Wi-Fi coexistence
in multi-channel settings. Authors in [16] developed a duty
cycle-based adaptive algorithm using Reinforcement Learn-
ing (RL) to dynamically select the duty cycle of the co-
channels used by both the LTE-V2X and Wi-Fi systems.
Here, the authors considered a discrete state and action space
for selecting duty cycles. Often, the information state space is
continuous. Basic value or policy iteration cannot be applied
to a continuous state space, and thus, Deep Reinforcement
Learning (DRL) can be employed. For instance, authors in
[17] propose a DRL-based coexistence scheme for LAA-
LTE and Wi-Fi. Similarly, Pei et al. in [18] proposed a mean
field-based DRL approach for LTE-U and Wi-Fi coexistence,
adding a game-theoretic aspect.

Deploying 5G NR-V2X in the sub-6GHz unlicensed spec-
trum presents critical challenges, specifically due to interfer-
ence between Vehicular User Equipment (VUEs) and Wi-Fi
6E users (WUEs). The coexistence issue is intensified by
both systems’ fundamentally different channel access mech-
anisms, leading to frequent contention and unpredictable per-
formance degradation. Wi-Fi employs Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA), which relies
on contention-based access. At the same time, NR-V2X
utilizes Dynamic Grant (DG) and Configured Grant (CG)
scheduling in mode-1 or Semi-Persistent Scheduling (SPS)

in mode-2 [1]. These differences increase the likelihood of
packet collisions, as both NR-V2X UEs and Wi-Fi STAs may
attempt to access the same time-frequency resources without
coordination. The absence of a unified spectrum-sharing
strategy leads to QoS degradation in high-mobility vehicular
scenarios, where latency and reliability are critical. NR-
V2X may face packet loss, while Wi-Fi experiences reduced
throughput. A potential solution is a high-level frame-based
MAC protocol to regulate spectrum access and minimize
collisions, but designing such a framework while meeting
both systems’ performance needs remains a challenge.

Traditional spectrum management relies on static, rule-
based methods or classical ML models, which are sub-
optimal in dynamic, real-time environments. These ap-
proaches struggle in high-traffic scenarios with fluctuating
network conditions. Reinforcement Learning (RL) offers a
more adaptive solution by making sequential decisions to
optimize resource allocation. This work leverages RL to
address the challenges of dynamic spectrum coexistence.

In contrast to the existing approaches, such as the Q-
learning-based methods in [15, 16] or the DRL-based strate-
gies with simplified MAC designs in [17, 18], our work
addresses the coexistence problem using a more expres-
sive and adaptive learning framework. These prior works
typically operate with discrete state-action spaces or static
duty-cycle tuning, which limits their responsiveness in real-
time, high-mobility environments, particularly in vehicular
networks where traffic and interference conditions vary
rapidly. Moreover, they do not adequately support continuous
state observations or flexible spectrum access. Thus, we
model coexistence as a sequential decision-making problem,
where actions are selected based on real-time, continuous-
valued states. Continuous-valued states are critical to accu-
rately capture the performance of both NR-V2X and Wi-
Fi systems. This formulation leads to a computationally
hard problem, which we address using Deep Reinforcement
Learning (DRL) over a Markov Decision Process (MDP).
Our DRL framework enables fine-grained, adaptive control
of transmission parameters, overcoming the limitations of
static and discrete models while ensuring robust coexistence
in realistic network conditions. The full framework is de-
tailed in Section III.

To the best of the authors’ knowledge, such an approach,
which considers DRL for NR-V2X and Wi-Fi 6E coexistence
under the sub-6 GHz unlicensed spectrum, although promis-
ing, has not been reported in the literature. In this context,
we propose a novel DRL-based coexistence framework to
dynamically allocate resources between NR-V2X and Wi-Fi
by conducting network simulations in ns-3.

B. Contributions
The key contributions of this work are fourfold and can be
summarized as:

• We propose a novel frame-based MAC protocol for
the NR-V2X and Wi-Fi coexistence. This protocol
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FIGURE 1: 5G NR-V2X mode 1 and Wi-Fi coexistence network model.

is proposed on top of the regular MAC interface of
the NR-V2X (both modes) and Wi-Fi. It opens an
advantage of getting control of the transmission time
of the systems, which turns it into a decision-making
problem.

• To address the coexistence between NR-V2X and Wi-
Fi, considering a more informative continuous state
space, and enabling dynamic decision making, we
propose an innovative DRL-based technique (along
with a novel distance-based reward) for allocating the
transmission time to the V2X and Wi-Fi networks. The
proposed algorithm helps achieve a higher cumulative
reward, improving both systems’ overall throughput and
fair coexistence.

• We develop a custom integrated framework by inte-
grating ns-3 version - 3.40, with a programmed DRL
algorithm to enable closed-loop and online interaction
between network simulation and DRL-based decision-
making. This integration allows the DRL agent to learn
from realistic NR-V2X and Wi-Fi coexistence scenar-
ios, providing a practical and flexible environment for
training and evaluation.

• We compare the proposed approach with the LTE-
V2X and analyze the impact of coexistence on both
the sub-systems. First, the 5G NR-V2X standard is
compared with the LTE-V2X standard when modes
1 and 2 coexist with Wi-Fi. Secondly, we analyzed
the impact on the Wi-Fi subsystem when coexisting
with NR-V2X mode-1 and mode-2 systems. Numerical
results state that when employing DRL on NR-V2X and
Wi-Fi coexistence, the average data rates for VUEs and
WUEs improve by ∼ 24% and 23%, respectively, as
compared to the static method (defined later); and even
higher improvement when compared to the existing RL-
based LTE-V2X and Wi-Fi coexistence approach.

II. System Model and Problem Formulation
A. NR-V2X mode-1 and Wi-Fi Coexistence System
We consider the system model shown in Figure 1. The VUEs
are the NR-V2X users, and the WUEs are the Wi-Fi Users
(Wi-Fi stations). Both kinds of users cooperate and share
the unlicensed spectrum. We consider the system to have a
single Wi-Fi access point and gNB.

FIGURE 2: The frame-based MAC protocol for the coexistence system.

The NR-V2X system follows the 5G V2X communication
with the 5G NR air interface, whereas the Wi-Fi subsystem
will use the standard CSMA/CA mechanism. To support
the spectrum coexistence between these two technologies,
we propose the frame-based MAC protocol as shown in
Figure 2. This MAC protocol is a higher-level protocol
to prevent simultaneous access by the two technologies.
The Wi-Fi’s Transmit Opportunity (TxOP) or NR-V2X’s
centralized scheduling (for mode-1) or Semi-persistence
Scheduling (SPS) (for mode-2) are not modified. Thus, there
can be multiple TxOPS for Wi-Fi within a defined Wi-Fi
transmission period ‘Tw’. The NR-V2X users transmit for
the first Tv interval by taking access to the channel at the start
of the current frame to ensure that no Wi-Fi transmissions
occur that overlap. This can be ensured by making the gNB
immediately schedule (without sensing) at the start of the
frame, scheduling the VUEs for uplink transmissions, and
sending the resource allocation information while the Wi-
Fi is still sensing. Furthermore, to ensure that no WUE
transmission starts towards the end of the Tw duration, which
will spill over to the start of the next frame, the NR-V2X can
send a control frame near the end of the frame time. This
control frame will probably experience a collision, but with
that, Wi-Fi will perform backoff as per CSMA/CA and thus
would not interfere at the start of the next frame. During
the transmission in the NR-V2X subsystem, the channel
will be completely utilized, and the WUEs will perform a
standard back-off and wait for the channel to get free. Once
the channel is empty when the transmission of the NR-V2X
subsystem is ended, the WUEs (Wi-Fi stations) will start
contending as per the CSMA/CA mechanism for the next
Tw time interval. The total frame time is Tf . Thus,

Tf = Tv + Tw (1)

B. Problem Formulation
We address the following two cases with this new approach.
If the transmission time Tv ≫ Tw even though there is less
VUE traffic, the Wi-Fi subsystem may suffer from packet
loss and collisions in case of high WUE traffic. On the other
side, if we keep Tw ≫ Tv, the aggregate throughput of the
NR-V2X system will be affected and reduced significantly.
Since the NR-V2X subsystem may be running safety-critical
applications, this communication loss may be detrimental.
Thus, by learning the traffic pattern on both the subsystems
and considering that the system is deployed on the NR-V2X
gNB, an approach to dynamically select the Tv is needed. Let
us assume the Rv and Rw are the aggregated throughput of
the NR-V2X and Wi-Fi systems, respectively. The problem
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can be formulated as follows:

max
Tv

Rv +Rw

s.t. Tv + Tw = Tf (2)

The total frame time Tf in the above equation is fixed. Now,
we assume the system is deployed on the base station. Thus,
getting the aggregated Wi-Fi throughput at the base station
is challenging. The aggregated throughput of the NR-V2X
subsystem can be maintained by analyzing the total packets
transmitted and received within the given time interval. But
as mentioned in [17], the information to track the Wi-Fi
traffic pattern, like the number of collisions and successful
transmissions, can be extracted by applying advanced energy
detection techniques on the channel. Thus, we use the
NR-V2X throughput and Wi-Fi features extracted from the
channel energy management to create a DRL approach that
dynamically slides over the time window Tv to maintain fair
coexistence between NR-V2X and Wi-Fi as discussed in the
next section.

III. Proposed Deep-RL based NR-V2X and Wi-Fi
Coexistence
This section presents the overall process to solve the above-
formulated problem, which can be regarded as a Markov
Decision Process (MDP). Later in the following subsections,
we propose a Deep Q-Learning-based algorithm for the co-
existence of NR-V2X and Wi-Fi.

A. Defining the Markov Decision Process
We develop a system at the gNB that can control the
transmission time of the NR-V2X subsystem within a frame
duration. This system has access to the available features of
the NR-V2X and Wi-Fi, which can be analyzed to identify
the traffic pattern of both the subsystems working in the
same unlicensed spectrum and make a decision on choosing
the transmission time Tv of the NR-V2X subsystem. The
observation state, i.e., the features available to gNB and
choosing Tv at a particular time, are independent of the
previous state and actions. Thus, this process can be well
addressed as an MDP, with the gNB as the decision maker.

MDP is a decision-making framework that models
stochastic environments. It comprises a tuple of five elements
(defined in the upcoming sections), including state space S,
action space A, transition probability Pat(st, st+1), reward
Rt(st, st+1), and discount factor γ. The decision-maker,
known as the agent in MDP, observes the environment’s
states, which comprise state space S. The action space A
contains all the agent’s available actions. Transition proba-
bility Pat(st, st+1) determines the possibility that the agent’s
action at the state st will lead to the state st+1. Imme-
diate reward Rt(st, st+1) is the reward the agent receives
from transitioning from st to st+1 by taking action at.
The discount factor γ ∈ [0, 1) represents the extent to
which future rewards are considered in present decisions.
The primary objective of MDP is to find the optimal pol-

icy π⋆(s) that maximizes the long-term cumulative reward∑∞
t=0 γ×Rt(st, st+1). The solution of MDP, i.e., π⋆(s), can

be obtained through dynamic programming (DP) methods,
such as value iteration, which require complete knowledge
of the system dynamics, including the transition probability
Pat

(st, st+1). DP methods are called model-based RL tech-
niques, while those that can solve MDP without knowing
the system dynamics are called model-free RL techniques.
Considering the problem formulated in (2), it is impossible to
apply Q-learning techniques as the state space is not discrete
but continuous.

B. DRL-based Coexistence Algorithm for NR-V2X mode-1
The proposed framework for NR-V2X and Wi-Fi coexistence
is illustrated in Figure 3. At any time step ‘t’, the Deep-
Q Reinforcement Learning (DQN) agent selects an action
‘at’ from the predefined action space ‘A’, determining the
transmission time parameters Tv for NR-V2X and Tw for
Wi-Fi 6E. These transmission parameters are then applied to
ns-3 simulations, which model the interactions between the
two subsystems under the chosen settings. The outcome of
the ns-3 simulations is captured as the current observation
or state ‘st’, representing the system’s status at time ‘t’.
The RL agent predicts the optimal transmission timing using
the learned policy network based on this state. Alternatively,
it may select a random action as part of the exploration-
exploitation trade-off. This newly chosen action is again fed
into the ns-3 simulation to generate the next state ‘st+1’.
A reward ‘rt+1’ is then computed based on the transition
from ‘st’ to ‘st+1’, assessing how well the selected action
improves system performance. This transition, consisting of
‘st’, ‘at’, ‘rt+1’, and ‘st+1’, forms an experience tuple ‘et’,
which is stored in the replay memory. The agent leverages
this replay memory to refine its decision-making policy,
aiming to maximize the cumulative discounted reward over
time. In the following section, we define the state space,
action space, and reward function, which are crucial for
formulating the problem as described in (2). Considering the
gNB as an agent, we model NR-V2X and Wi-Fi networks
as stochastic environments. The target of the agent is to dy-
namically manage the transmission time of the NR-V2X Tv

system in every frame. Based on that, the Wi-Fi transmission
time will be decided per (1), as the total frame time Tf

is fixed. Therefore, the agent will increase or decrease the
Tv after learning the traffic on both subsystems from the
observation/state space.

A = {−50,−40,−30,−20,−10, 0, 10, 20, 30, 40, 50} (3)

The action space in (3) (also in Figure 3) is the required
change in Tv in milliseconds (ms). For example, the action
of ‘−50’ refers to the reduction of Tv by 50ms. This implies
that there will be an increase of 50ms in Tw. This action
should ideally be taken in cases with more traffic on the Wi-
Fi than on the NR-V2X side. We need the agent to learn
an optimal policy to take good actions. By looking at the
observations/states and taking actions randomly (initially),
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FIGURE 3: The proposed framework for the NR-V2X and Wi-Fi coexistence system.

the agent can learn the Q-values for every state-action pair.
Therefore, it is necessary to define an effective state space
for the agent. Now, as discussed in the earlier sections, not
considering the aggregate throughput of the Wi-Fi system
is a more realistic scenario. However, we need to identify
key features that will enable the agent to effectively gather
information about WUE traffic. Accordingly, we define the
following state or observation space from Figure 3:

s = {nc, nt, Rv} (4)

where nc, nt, and Rv are the number of collisions during
Wi-Fi transmissions, successful Wi-Fi transmissions, and the
aggregate throughput of NR-V2X users. Here’s a refined
version of the sentence for improved clarity:

These parameters can be obtained using advanced energy
detection techniques applied to the channel during Wi-Fi
transmissions, as outlined in [17]. In our case, we extracted
them from the channel information during the simulation.
As the gNB itself is the agent, and that’s where we deploy
the framework, Rv can be calculated by analyzing the
total packets transmitted and received within the given time
interval during the NR-V2X transmission.

For every state, the agent will choose an action. As in
most RL systems, the agent will initially choose actions
randomly. However, with increasing iterations, the agent
learns the appropriate action to take in each specific state,
which is known as a policy. To develop an effective policy,
the agent requires feedback after every action. This feedback
can be given by providing the agent with a reward. As
per the features extracted in the state space, we propose
the following reward function to make the agent learn the
optimal policy by maximizing the cumulative discounted
reward.

Our key innovation lies in the distance-based reward
function (Eqs. 5–9), which uniquely optimizes fairness by
minimizing Manhattan distances between current and ideal
states (nc, nt, Rv). This approach outperforms traditional
throughput-maximization rewards by penalizing collisions
and prioritizing balanced resource allocation. The decen-
tralized DRL architecture for mode-2 (Figure 4) also elim-
inates reliance on gNB, enabling AP-driven decisions—a
first in NR-V2X/Wi-Fi coexistence literature. The Manhattan

distance will be calculated between the individual state
variables: nc, nt, Rv, and other max/min variables nc,min,
nt,max, Rv,max. With the distance-based reward, the agent
will get a greater reward only if the state space variables
nc, nt, and Rv are closer to the max/min values reached
till that point. To initiate learning, a higher value will be
initialized for nt,max and Rv,max, and a lower value for
nc,min. Consequently, the agent will be trained to select
actions that maximize rewards, leading to more successful
transmissions and fewer collisions, thereby improving the
overall data rates of both systems. We define the distance-
based functions as follows:

Dnc
=

{
0, if nc,min > nc

M(nc, nc,min), otherwise

}
(5)

Dns =

{
0, if nt,max < nt

M(nt, nt,max), otherwise

}
(6)

DRv
=

{
0, if Rv,max < Rv

M(Rv, Rv,max), otherwise

}
(7)

where Dnc
, Dns

, and DRv
are the required Manhattan

distances for collisions, successful transmissions, and V2X
data rate.M is the Manhattan distance function. The overall
distance with respect to the above-computed distances can
be written as:

Dt =
√

D2
Rv

+D2
ns

+D2
nc

(8)

We create a variable Dmax to normalize the distance to
use it in the reward function. Finally, we compute the reward
function as follows:

Rt = e−
min(Dt,Dmax)

Dmax (9)

The Dmax variable will be updated to Dt if it is exceeded
by Dt. Within the context of DRL, a Deep Neural Network
(DNN), also known as Deep Q-Network (DQN), is created to
estimate the expected cumulative reward of taking an action
(a) in a particular state (s), denoted as Q(s, a; θ), where
θ refers to the weights of the DQN. Once the DQN has
converged with θ at θ⋆, it can predict the maximum expected
cumulative reward for any given state-action pair s, a as

VOLUME , 5



Shah et al.: Dynamic Spectrum Coexistence of NR-V2X and Wi-Fi 6E using Deep Reinforcement Learning

Q(s, a; θ⋆). The optimal policy π⋆(s) can be determined
using this information.

π⋆ = argmax
a

Q⋆(s, a; θ⋆) (10)

The typical DRL approach is based on the Q-learning
framework [19], a model-free reinforcement learning algo-
rithm. Specifically, we aim to learn the Q-function, Qθ,
parameterized by θ, which estimates the expected cumulative
reward for taking an action a in a given state sequence s≤t

and following the optimal policy thereafter. The expected
cumulative reward is the feedback to the agent for its
selected transmission time Tv (or Tw for NR-V2X mode-
2) by observing the current Wi-Fi and V2X traffic.
The Q-function is formally defined as [20]:

Qθ

(
s≤t, a

)
= E

[ ∞∑
τ=0

γτ rt+τ | S0 = s0, . . . , St = st, At = at

]
(11)

where rt is the reward received at time step t, and γ
is the discount factor that determines the importance of
future rewards. The Q-function captures the expected sum
of discounted rewards starting from the state sequence s≤t,
taking action a, and thereafter following the optimal policy.

To update the Q-function a Bellman operator B is used,
which is defined as:

BQθ (s≤t, at) = rt + γmax
a

Qθ (s≤t+1, a) (12)

The Bellman operator provides a recursive relationship
for the Q-function, expressing the value of the current
state-action pair in terms of the immediate reward plus the
discounted maximum future reward.

An optimal policy π∗
L satisfies the Bellman equation:

BQπ∗
L

θ (s≤t, at) = Q
π∗
L

θ (s≤t, at) (13)

where Q
π∗
L

θ is the Q-function corresponding to the optimal
policy. We denote the optimal Q-function as Q∗ = Qπ∗

L

when this condition is met. The optimal Q-function men-
tioned in the above equation by Q

π∗
L

θ can be learned from
the following equation:

Q(st+1, at+1) =Q(st, at) + α× [Rt+1

+ γ(Q(st+1, a)−Q(st, at))] (14)

where α is the learning rate, controlling how much we
adjust the network’s weights during training, and γ is the
discount factor, which determines how much importance
we give to future rewards compared to immediate rewards
(the recent rewards are based on the latest WUE/VUE
traffic). In our DRL framework, we train two Deep Q-
networks—a policy network and a target network—to learn
the optimal action-selection strategy. The policy network
takes the current state (i.e., the Wi-Fi and NR-V2X net-
work variables defined in (4)) as input and computes
the Q-values for each possible action, resulting in a set
{q(s, a1), q(s, a2), . . . , q(s, an)} for a total of n actions (in
our case, n = 11) as defined in (3). These Q-values represent
the expected cumulative reward for taking each action from

Algorithm 1 Proposed DRL Algorithm

Require: Training the DQN agent with the NR-V2X and
Wi-Fi simulations in ns-3. The target is to learn the opti-
mal weights on both the policy and the target networks.
Both the Neural Networks’ weights will be initialized
randomly.

1: while t > tmax do
2: if rand() < E then
3: Random action at ∈ A
4: else
5: at ← argmaxaQ(st, a; θ)
6: end if
7: Tv ← at ▷ for mode - 1
8: Tw ← Tf − Tv ▷ for mode - 1
9: Tw ← at ▷ for mode - 2

10: Tv ← Tf − Tw ▷ for mode - 2
11: V UEs← Poisson(λ)
12: WUEs← Poisson(λ)
13: Rv ← RunNR-V2XSimu(Tv,VUEs)
14: nc, nt ← RunWi-FiSim(Tw,WUEs)
15: st+1 ← nc, nt, Rv ▷ for mode - 2
16: st+1 ← nc, nt ▷ for mode - 2
17: et ← ⟨st, at, Rat(st, st+1), st+1⟩
18: if t ≥ m then
19: Get the et by getting m experiences from the

replay memory list M.
20: Update θ by minimizing the loss of the policy

network based on the Q-function using SGD.
21: end if
22: if t%K == 0 then
23: θ′ = θ
24: end if
25: t = t+ 1
26: Compute ϵt+1 as per (18)
27: end while

the current state. B ased on these computed values, the agent
selects the best action, or sometimes a random action, during
the early training phase to encourage sufficient exploration.
Once an action is taken, the environment provides the next
state st+1 along with a corresponding reward. The target
network then processes the next state st+1 and computes the
desired Q-values, denoted as Q(st+1, a). These values are a
stable reference or target when updating the policy network.
The target network contributes to training stability by en-
suring that the target Q-values used in the loss calculation
remain consistent over multiple iterations. Each experience,
comprising the current state, the selected action, the reward,
and the next state, is stored in a replay memory as a tuple

et =< st, at, Rat
(st, st+1), st+1 > (15)

Over several epochs, these experiences are collected in a
memory list M . Later, random mini batches drawn from this
replay memory are used to update the policy network. This
experience replay mechanism helps break the correlation
between sequential data, leading to more stable learning. The
policy network is updated by minimizing the loss between
its predicted Q-values and the target Q-values computed
by the target network. Over many iterations, this training

6 VOLUME ,



FIGURE 4: 5G NR-V2X mode-2 and Wi-Fi coexistence network model.

process enables the Q-function to converge toward the op-
timal policy. Initially, the agent selects actions randomly
(exploration). Still, as training progresses and the epsilon
value in the epsilon-greedy strategy decreases, the agent
increasingly relies on the learned Q-values (exploitation).
Periodic updates to the target network are performed by
copying the weights from the policy network every K itera-
tions. This further helps maintain training stability and avoid
rapid fluctuations in the Q-value estimates. The training
process is a continuous cycle in which the policy network
estimates Q-values, actions are chosen and executed, new
experiences are stored, and both networks are updated using
these experiences until the Q-function converges to an op-
timal policy. The proposed DRL approach is described in
Algorithm 1. It leverages a DQN agent, which undergoes
training using simulations in ns-3 for both NR-V2X and
Wi-Fi. The algorithm operates iteratively, with each iteration
aiming to fine-tune the agent’s decision-making process. At
each time step t, the agent decides on an action at, which
could either be a random in case the randomly generated
value is less than a given probability E ∈ (0, 1) (line 2 in
Algorithm - 1), or the action that maximizes the Q-value
function Q(st, a; θ) for the current state st (line 5). The
chosen action determines the transmission time Tv for the
NR-V2X system (line 7, or line 10 for mode-2), with the
remaining time allocated to the Wi-Fi system as Tw (line 8,
or line 9 for mode-2).

The algorithm then simulates the environments for both
NR-V2X and Wi-Fi. The NR-V2X simulation is executed
with the transmission time Tv and VUEs arrival following
a Poisson distribution with rate λ (line 11). Simultaneously,
the Wi-Fi simulation runs with the remaining time Tw, and
the WUEs arrival also follows a Poisson distribution with the
same rate λ (line 12). The outcomes of these simulations,
including the rewards and the new state st+1, are then used
to update the agent’s experience.

The agent collects experiences as tuples
⟨st, at, Rat(st, st+1), st+1⟩. Once enough experiences
are gathered (i.e., t ≥ m), it samples from the replay
memory to update the policy network weights θ by
minimizing the Q function loss using Stochastic Gradient
Descent (SGD) (lines 19 and 20). At regular intervals K,
the target network weights θ′ are updated to match the
policy network weights θ (line 20).

FIGURE 5: The frame structure of the coexistence system with NR-V2X
mode - 2 SL

C. DRL-based Coexistence Algorithm for NR-V2X mode-2
The NR-V2X mode-2 SL does not use network coverage and
is specifically designed for V2V and V2I SL communication.
Thus, there is no involvement of the base station (gNB),
and the vehicles and infrastructures having the V2X radio
communicate with each other in the 5.9 GHz band using SPS
scheduling. When modeling the NR-V2X mode 2 and Wi-Fi
using RL, the question that needs to be addressed is what
entity will play the role of an agent. The V2X network model
without a gNB contains multiple VUEs communicating with
each other via the V2V SL. The Wi-Fi, on the other hand,
is the same as the one described in the earlier sections of
this paper, employing the CSMA/CA as the channel access
mechanism. The updated network model for the NR-V2X
mode 2 and Wi-Fi coexistence is described in Figure 4.

The proposed frame-based channel access MAC protocol
for mode-1 needs to be updated to solve the coexistence
problem described in Figure 4, where there is no gNB. In
the absence of the gNB on the V2X side communication,
the control to execute the proposed frame-based MAC layer
protocol is given to the Wi-Fi AP.

Figure 5 describes the updated frame-based protocol in
which Wi-Fi will make the initial transmission for Tw time.
This Tw time interval is decided by the RL Agent, i.e., the
AP, as per the intelligence it receives in the state space. The
problem formulation stays the same as (2), but the execution
changes as the AP has the role of decision-making. We keep
the same action space as the one described in (3), but the
state space is updated as follows:

S = {nt, nc} (16)

The NR-V2X Mode 2 is the offline mode of vehicular
communication that will be extensively used for traffic safety
and management purposes. Thus, it is necessary to ensure
seamless transmission for this communication mode. For this
reason, we propose a different frame-based channel access
approach. We constrain the transmission time for the VUEs,
stating that they will transmit for a fixed amount of time
irrespective of the Wi-Fi and NR-V2X users’ traffic. For a
time frame Tf , the VUEs will transmit for at least Tf/2
units. If the Wi-Fi traffic is high, the Wi-Fi users will use
other Tf/2 units; if the traffic is low, the Wi-Fi users will use
Tw < Tf/2. Thus, the Wi-Fi AP, being the DRL agent, will
choose the change in transmission time of Wi-Fi ∆Tw from
the range [0, Tw/2], by observing the state space mentioned
above. The reward function will not depend on the NR-V2X
parameters, as we are dedicating 50% of the transmission to
the V2X system. We use the following reward function for
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this modeling, which gives feedback to the agent based on
the Wi-Fi transmission parameters:

Rt = e
− nt∗nc

ntmax (17)
IV. Simulation setup and Results
In this section, we describe the ns-3 simulations of Wi-Fi
and NR-V2X in Subsections 5-A and 5-B, respectively, DRL
integration using the OpenAIGym framework in Subsection
5-C, and later describe the simulation results in the subse-
quent subsection. The Wi-Fi system consists of 1 AP and
multiple WUEs, and the V2X subsystem consists of 1 gNB
and multiple VUEs in case of mode-1, and no gNB with
only VUEs in mode-2. The simulations are carried out per
the Figure 3.

The ns-3 offers a dynamic environment for simulating
diverse network scenarios, enabling the testing of newly
proposed algorithms, protocols, frameworks, and models in
a controlled yet realistic setting. We simulate the 5G NR
mode-1 and mode-2 scenarios and the Wi-Fi 802.11 ax
network using the available NR and Wi-Fi modules on the
central frequency of 5.9 GHz.

We implement Algorithm 1 in the simulations, which
require online learning of the Deep-RL agent. In ns-3, Wi-
Fi simulations for the 802.11ax standard can be configured
to operate in the 6 GHz frequency band. For NR-V2X
simulations, the central frequency can be adjusted to accom-
modate custom frequencies. To study coexistence, NR-V2X
simulations are set to run at 5.9 GHz with a bandwidth of
50 MHz. Table 1 outlines the simulation parameters for both
the Wi-Fi and NR-V2X systems.

A. Simulation of Wi-Fi 802.11ax
We simulate the Wi-Fi Standard 802.11ax with multiple
STAs and a single AP. This is the Wi-Fi subsystem of
the framework described in Figure 3. We use the Wi-Fi
simulations validated in [21]. This system is simulated based
on the CSMA/CA with the number of incoming WUEs
also following a Poisson process with the arrival rate of λ1

For 802.11ax, ns-3 supports three types of channels with
different widths: 20MHz, 40MHz, and 80 MHz. Thus, we
consider all three for testing. We consider the Data and
Control modes as ‘OfdmRate54Mbps’.

B. Parameters of 5G NR-V2X Mode - 1 and Mode - 2
Simulations
To simulate the network coverage scenario characteristic of
NR-V2X mode-1, we employ the nr-module proposed under
the 5G-lena-v2x simulation by CTTC Spain [22]. The NR-
V2X system is implemented on the 5G NR air interface uti-
lizing the ns-3 nr-module. Our simulation scenario includes
a single gNB and multiple VUEs, with the VUEs following
a Poisson arrival process characterized by the arrival rate λ.
This simulation contains multiple vehicular devices in three

1Random traffic of VUEs and WUEs is generated based on the arrival
rate λ. Equal arrival rates are considered in the simulations.

TABLE 1: Simulation parameters for NR-V2X and Wi-Fi 802.11ax.
Parameter NR-V2X Wi-Fi 802.11ax

Time for a Successful Tx: Ts 50 ms 50 ms
Total Frame Time: Tf 100×Ts 100×Ts

Arrival rate of Users λ = {5.5, 6.5, . . . , 9.5} λ = {5.5, 6.5, . . . , 9.5}
Number of gNBs 1 1

Modulation Scheme Index (MCS) 7 7
Simulation Time Tv Tw

Total Transmit Power 8 dBm 8 dBm
Bandwidth/Channel Width (CW) 50 MHz 20 MHz

Central Frequency 5.9 GHz 6 GHz
Packet Size 1252 bytes 1472 bytes

lanes, communicating via the V2V SL. The SPS technique
is implemented as the MAC protocol of these devices, and
on top of that, the proposed upper layer frame-based MAC
protocol is implemented to get the transmission time Tv for
the VUEs.

C. Deep-RL Integration
Once the Wi-FI and NR-V2X subsystems, as detailed in
Section 5-A and Section 5-B, respectively, are configured
using the ns-3 (ver 3.40) nr-module and OpenAIGym, they
are invoked during the execution of the DRL setup, as
illustrated in Figure 3 and Algorithm-1. We are the first to
integrate ns-3 simulations with DRL specifically to develop
a high-level MAC protocol. No other integration module is
available for this specific purpose. The Wi-Fi and NR-V2X
parameters nc, nt, and the aggregated NR-V2X data rate Rv

are traced in ns-3 and are provided as input to the DRL agent
as its state space. The algorithm is implemented, and the
DRL agent is trained according to equations (14) and (15).
The policy and target networks in the DRL system consist
of an input layer, two fully connected layers, and an output
layer. Each network includes two fully connected layers
comprising 512 and 256 neurons. The Adamax optimizer
is employed, and parameter optimization is performed using
the SGD algorithm. The number of iterations or steps within
epochs may be reduced if early stopping is triggered or
if there is no significant change in the reward for more
than five iterations; a changing threshold β is established
for this purpose. The simulation parameters for the DRL
approach are crucial for optimizing the learning process and
overall performance. The discount factor (γ) is set to 0.04,
which influences the weight given to future rewards in the
learning process, emphasizing short-term gains. The learning
rate (α) is 0.5, determining the step size at each iteration
while moving toward a minimum of the loss function,
hence balancing the trade-off between speed and accuracy
of convergence. The learning process spans around 100
epochs until the probability E ∈ (0, 1) reaches a higher
value (0.8) when the agent exploits the learned correlations
in the state space. Additionally, the epsilon decay (ϵ) is
initially configured at 0.6, which controls the rate at which
the exploration probability decreases, balancing exploration
and exploitation over time. Lastly, the number of iterations
(K) is set to 10, specifying the number of times the training
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TABLE 2: Comparison of the proposed approach with the other existing approaches.

Algorithm/Technique Coexistence System with Wi-Fi Aggregated Wi-Fi Throughput
(Mbps)

Aggregated V2X Throughput
(Mbps)

Traditional [16] LTE-V2X mode - 3 8 22
Average [16] LTE-V2X mode - 3 9 28

LBT [6] LTE-V2X mode - 3 13 13
Q-Learning [16] LTE-V2X mode - 3 14 28
Static (Tv = 2.5) NR-V2X mode - 1 29.14 33.72
Static (Tw = 2.5) NR-V2X mode - 2 29.14 31.392
DRL (proposed) NR-V2X mode-1 36.03 41.63
DRL (proposed) NR-V2X mode-2 36.13 38.03
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FIGURE 6: Analysing the datarate with respect to the given transmission
time for NR-V2X mode -2 and Wi-Fi 6, both stand-alone systems with the
impact of mobility on the NR-V2X system.

loop is executed per epoch. These parameters collectively
ensure the DRL model is well-tuned for effective learning
and performance.

A standard Epsilon greedy policy is applied to balance
exploration and exploitation by the agent. The value of ϵ is
initialized at 0.6 and subsequently reduced as follows:

ϵt+1 =
ϵt − ϵmin

K
(18)

where the ϵt is the value of ϵ in the iteration ‘t’ and ϵmin

is the minimum value of epsilon recorded in that particular
epoch (Algorithm 1 line 26).

We consider two performance metrics. First is through-
put, which evaluates and compares the model performance
with the existing approaches. The second is fairness, which
measures the impact of varying channel conditions on both
subsystems. We use the formulation for fairness in (19),
which is the modified version of Jain’s fairness index. The
typical Jain’s fairness index calculates the fairness at the
node level. However, for this problem, we need to consider
fairness at the system level.

F =

(∑Tmax
t=1

(∑WUEs
i=1 Rw,i,t +

∑V UEs
i=1 Rv,i,t

))2

(Ntotal)
(∑Tmax

t=1

(∑WUEs
i=1 R2

w,i,t +
∑V UEs

i=1 R2
v,i,t

)) (19)

The above equation calculates the system level fairness,
where Rv,i,t and Rw,i,t are the throughputs of the V2X and
Wi-Fi users at iteration t, and Ntotal = V UEs + WUEs.
This system-level fairness index aims to measure if fair
transmission time is allocated to Wi-Fi and V2X users
by observing their data rates. Additionally, we note that
for this specific problem, learning short-term dynamics is

more important. Increasing the discount factor makes the
gradient learn long-term dynamics, yielding poor results.
Thus, learning a shorter horizon for capturing recent traffic
trends is more effective.

D. Simulation Results
In this section, we present a comparative analysis of the
results from the proposed approach with various existing
schemes: Traditional and average methods referred in [16],
LBT [6], and Q-Learning [16] when applied to the LTE-
V2X and Wi-Fi coexistence system. Table - 2 compares the
5G NR-V2X and Wi-Fi coexistence system with the LTE-
V2X and Wi-Fi coexistence scenarios. The effectiveness of
5G technology when integrated with the proposed approach,
particularly in the case of limiting transmission time, is
evident from the significantly enhanced aggregated data rates
observed for VUEs, i.e., 41.63 Mbps and 38.03 Mbps for
modes 1 and 2, respectively. It outperforms the static method
(same system, but the action is static Tw/Tv = 2.5) applied
to NR-V2X and Wi-Fi coexistence, and it also performs
better than the previously proposed works on LTE-V2X and
Wi-Fi coexistence [16]. First, we analyze the performance
of both Stand-alone Wi-Fi and NR-V2X by carrying out
the simulations for a Tv = Tf = [0, ...5]. This will help
us understand the convergence limit of the algorithms, as
the simulations will let us observe the maximum possible
throughput for both sub-systems. Figure 6 shows the achiev-
able throughput for different transmission periods. The Fig-
ure 6 also shows the impact of relative velocity ’v‘ between
the VUEs. Thus, with the increase in relative velocity, the
Average data rate reduces. TO maintain a more realistic
scenario, we effectively maintain the relative velocity of
56.25 mph while simulating the NR-V2X scenario in the co-
existence system. Additionally, the curve is increasing with
transmission periods. We consider the V UEs = WUEs = 6
over a channel of 40MHz. Wi-Fi is moving over 31 Mbps
when Tw = 3, and for NR-V2X, it is moving over 32 Mbps
when Tv = 3. These are some critical points to be observed,
as when Wi-Fi gets a transmission time greater than 2.5,
it gets priority over the NR-V2X system, and vice versa.
Suppose the coexisting system’s average data rate (Wi-Fi or
NR-V2X) comes close to these critical values. In that case,
we can assume that our algorithm is performing well while
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FIGURE 7: Analysing the effect of using different CW’s on data rates of VUEs (V2X mode 1 SL) and WUEs. Note that ‘SA’ stands for stand-alone
Wi-Fi/NR-V2X Systems.
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FIGURE 8: Analyzing the effect of using different CWs on data rates of VUEs (V2X mode - 2) and WUEs. Note that ‘SA’ stands for stand-alone
Wi-Fi/NR-V2X Mode 2 systems.

reaching convergence, as the Wi-Fi/V2X system performs
equivalent to its stand-alone system with an average of 6
users, and a prioritized transmission time. We will use these
later to analyze the performance of the proposed coexistence
approach.

With the proposed method, the Wi-Fi throughput of 36.03
and 36.13 in the case of coexistence with NR-V2X modes
1 and 2, respectively, outperforms the static methods and
the previously proposed methods for LTE-V2X and Wi-Fi
coexistence. Comparing the results, we observe a substantial
improvement of around 24% and 23% in the average data
rates for VUEs and Wi-Fi users (WUEs), respectively, when
employing DRL on NR-V2X and Wi-Fi coexistence, as
compared to the static methods. There is an improvement of
48% in NR-V2X throughput when compared to the existing
RL-based LTE-V2X and Wi-Fi coexistence and other static
approaches. The DRL approach is capable of controlling
transmission time after learning about Wi-Fi and V2X traffic.
This improvement substantiates the assertion that the 5G NR-
V2X technology, which can achieve better throughput within
reduced transmission times, seems more reliable than LTE-
V2X in addressing high data transmission demands in ITS.
To the best of our knowledge, no existing work focuses on
NR-V2X (both modes) and Wi-Fi 6E coexistence leveraging
RL-based or any other traditional methods. Due to the lack of

LTE-V2X simulations with a similar scenario to that of 5G
NR-V2X in ns-3, we couldn’t apply and compare the other
state-of-the-art methods proposed for the LTE-V2X and Wi-
Fi coexistence. Now, as discussed before, we can compare
the results with those in Figure 6. We can conclude that both
systems can achieve the average data rate in the coexistence
scenario (Figure 8), which is nearer to that in the stand-
alone scenario with transmission time of 3 seconds (Figure
6). Since the total frametime in the coexistence scenario is
5 seconds, it’s a win-win case for both the systems if they
can get an average datarate equivalent to or above that at the
transmission time of 3 seconds in the stand-alone scenario.
Thus, we can justify the convergence of the model as it can
reach the performance equivalent to the stand-alone systems
scenario. With the improved results, we can notice that the
proposed learning mechanism effectively makes the agent
learn the best policy based on the varying VUEs and WUEs
traffic. It can learn the optimal parameters of the policy
network and hence learn how to optimally address the traffic
on both subsystems and manage the transmission time of
the NR-V2X subsystem accordingly. We further validate the
coexistence simulations by varying system parameters. First,
we vary the VUEs and WUEs arrival rates (equal to λ). This
can be observed in Figs. 7-a and 7-b, the V2X and Wi-Fi
throughput decline as the arrival rate increases. The results
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are generated by simulating with a trained DRL agent for
20 epochs and averaging the throughput.

We vary the CW of the Wi-Fi system and analyze the
effect on the NR-V2X and Wi-Fi performance. With a higher
CW, the Wi-Fi channel will cover a larger span, and hence,
the overall throughput will increase. In Figure 7-b, we can
notice that the Wi-Fi throughput curve shifts above as we
increase the CW from 20 MHz to 40 and 80 MHz. The
80 MHz scenario even outperforms the stand-alone2 Wi-Fi
as the frequency resources are extensive. Simultaneously, in
Figure 7-a, the V2X throughput is also increased. This shows
that the DRL agent allocates less time to Wi-Fi if it has
higher bandwidth. It can be observed in Figs. 8-a and 8-b,
as the arrival rate increases, the data rates for both V2X and
Wi-Fi decline. We also vary the CW of the Wi-Fi system and
analyze its impact on NR-V2X and Wi-Fi performance. As
the CW increases, the Wi-Fi channel spans a more extensive
frequency range, increasing overall throughput. In Figure 8-
b, it is evident that the Wi-Fi throughput improves as the CW
is increased from 20 MHz to 40 MHz and 80 MHz. However,
in Figure 8-a, the V2X throughput increases with increasing
Wi-Fi CW, indicating that the DRL agent allocates less time
to Wi-Fi when higher bandwidth is available to the Wi-Fi
system.

Figure 9 shows that fairness is improved with many users
as the arrival rate λ of VUEs and WUEs increases. This
indicates that the V2X throughput has declined with a higher
slope than the Wi-Fi throughput and came closer to the Wi-
Fi throughput. Additionally, fairness is also improved in the
case of higher Wi-Fi CWs. Figure 10 illustrates the effect of
varying arrival rates λ and CW on the number of packet col-
lisions in Wi-Fi when they coexist with two NR-V2X modes.
It is observed that as the arrival rate increases, the number
of packet collisions in Wi-Fi rises for all configurations. Wi-
Fi systems with a CW of 20 MHz experience the highest
collisions, whereas those with 80 MHz CW show the lowest
collisions across both modes. Notably, when coexisting with
NR-V2X mode-2, Wi-Fi consistently results in higher packet
collisions than Mode 1 for the same CW and arrival rate. This
indicates that NR-V2X mode-1 and Wi-Fi systems are more
collision-prone environments. This also suggests that mode-1

2By stand-alone mode, we mean the scenario of no coexistence (only
Wi-Fi/NR-V2X)

FIGURE 10: Number of Wi-Fi packet collisions vs. λ by varying the CWs
while coexisting with NR-V2X mode - 1 (M1) and mode - 2 (M2).

requires higher spectrum coverage than mode-2 as it requires
higher transmission time, degrading Wi-Fi performance. The
fact is reasonable as it has a more advanced channel access
mechanism than mode-2, i.e., the DG scheduling under the
network coverage. Moreover, the results indicate that mode-2
communication requires less transmission time than mode-1,
making the system fairer for Wi-Fi users.

The DRL model’s policy network and target networks
consist of an input layer that takes the current NR-V2X and
Wi-Fi system state, followed by two fully connected Dense
layers that extract and refine features using ReLU activation.
The final output layer computes Q-values for all possible
actions, enabling the agent to select the optimal transmission
time. The policy network’s computational complexity is
calculated in terms of Floating Point Operations (FLOPs) as
36,608 FLOPs. When benchmarked on a machine with 8 GB
RAM and an Intel Core i7 CPU at 2.2 GHz, it achieves an
average inference time of 9.364 ms. In a real-time scenario,
the algorithm will be deployed on the gNB in case of Wi-
Fi coexistence with NR-V2X mode-1, and on the Wi-Fi
AP in case of coexistence with NR-V2X mode-2. At any
infrastructure, just involving an 8 GB RAM microprocessor
of 2.2 GHz, internally inside the infrastructure of gNB/AP
or an external system (like Raspberry Pi 5) will provide the
inference time of around 9.364 ms. Given that the typical
time required for a successful transmission in the NR-V2X
and Wi-Fi coexistence scenario is significantly higher, the
proposed model can set the system parameters in less than
1
5

th of this duration. This rapid inference ensures seamless
coexistence between NR-V2X and Wi-Fi systems without
introducing additional latency.

V. Discussions
Through the extensive simulations in the ns-3, we created an
example of designing a frame-based Media Access Control
(MAC) protocol that can be created and managed algorith-
mically to make the two subsystems, NR-V2X and Wi-Fi,
optimally coexist. However, we observed a few shortcomings
in the approach while performing the simulations. There are
a few iterations where we observed that the data rate of the
NR-V2X subsystem drops below 20 Mbps when the number
of VUEs is still high. This indicates that an individual VUE
will receive lower throughput, and some VUEs may be
deprived of sufficient resources. These are unfavorable events
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for the 5G NR-V2X systems because, as per the 3GPP Rel
15, the C-V2X is developed for supporting the ITS services,
and they might be supporting/implementing critical services
such as road safety. A sudden drop in NR-V2X throughput
can lead to critical failures. To prevent this, transmission time
allocation must ensure that no VUE experiences throughput
below a set threshold. This necessitates a constrained opti-
mization framework that enables Deep Q-Learning to learn
an optimal policy while adhering to this safety constraint.

While the proposed framework has been extensively eval-
uated using ns-3 simulations, its scalability and applicability
in larger and more diverse network environments remain
important considerations. Interference management may be
crucial to address, as hidden node problems cannot be
addressed in this study. Transmissions from a hidden Wi-
Fi node can lead to inter-system interference when a V2X
transmission is ongoing. Furthermore, deploying a Deep-RL
model in real-time wireless environments can pose additional
challenges. The time and computational complexity should
be under a certain limit to ensure timely responses, so there
would not be latency concerns. Therefore, it is essential
to create lightweight Reinforcement Learning models for
prompt decision-making. Additionally, the Deep-RL agent
in the exploration state can make incorrect decisions that
can negatively impact the throughput of any coexisting
systems. For example, while exploring, the agent allocates
very little transmission time to the NR-V2X system in a
high-traffic scenario. As we know, the NR-V2X is a standard
proposed for implementing safety-critical ITS use cases,
and having a network outage can have a critical impact on
the running applications. Thus, a constraint can be set to
avoid such situations. Implementing Constrained RL or Safe-
RL could resolve such issues. Future work should evaluate
the framework in more complex network settings, includ-
ing large-scale vehicular testbeds, to assess its robustness
under real-world constraints. Addressing these scalability
challenges looks crucial for transitioning from simulation-
based validation to practical deployments.

VI. Conclusion
This work proposes a novel frame-based MAC protocol for
NR-V2X and Wi-Fi coexistence. Unlike static methods, we
model it as a decision-making problem and apply DRL to
dynamically control transmission times based on real-time
network conditions. We model the DRL scenario using the
OpenAIGym framework. Choosing the gNB as the agent in
the case of coexistence with mode-1 and the Wi-Fi AP in the
case of mode-2, the approach is executed using the ns-3 sim-
ulator by developing the two above-mentioned subsystems.
The simulation results conclude that the DRL-based agent
maintains a reasonable transmission time control, validated
by the results in Table 2, with high-performance improve-
ments of the proposed approach compared with the existing
schemes. The findings indicate that utilizing DRL for NR-
V2X and Wi-Fi coexistence results in significant improve-
ments in the average data rates for VUEs and WUEs with

an increase of approximately 24% and 23%, respectively
when compared to the static method for coexistence. Our
analysis shows that Wi-Fi performance degrades more when
coexisting with NR-V2X mode-1 than mode-2, as mode-1,
operating under network coverage, requires more spectrum
resources.
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