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Abstract

A Glioma brain tumor is the deadliest brain tumor with high mortality. Treatment

planning by human experts depends on a proper diagnosis based on physical symp-

toms along with a medical image analysis. Highly variability of a brain tumor in

terms of size, shape, location, and a high volume of Magnetic Resonance Images

makes the analysis time-consuming. Such manual diagnosis is non-reproducible

and depends highly on human expertise. Automatic/semi-automatic segmentation

methods achieve a reduction in time with excellent reproducible results. Further,

proper analysis follows the prediction of the overall survival of patients. The pre-

diction helps in planning post-operative treatments which improve the prognosis.

This dissertation develops fully convolutional neural networks for tumor segmen-

tation followed by a random forest regressor to predict the overall survival of the

patients.

The first network to address the segmentation problem is the 2D encoder-

decoder network that segments the substructures of a tumor separately. A net-

work parameter initialization technique addresses the class imbalance problem and

scarcity of the label data. The network is extended to incorporate dense connec-

tions between successive layers of the encoder part, which helps the network learn

diversified features from the input. In addition, it helps the error gradient to reach

the initial layers in case the deep layers are not able to learn from the input. The

network is further extended to incorporate a three-dimensional voxel relationship

for consistent performance on unseen data.

Tumor segmentation follows classification of patients based on survival days.

The classical approaches - random forest classifier and random forest regressor ad-

dresses the problem to calculate survival days based on an optimal set of input

features, which are extracted from the segmentation network.
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Chapter 1

Introduction

1.1 Brain Tumor

A tumor of the Central Nervous System (CNS) is a mass formed due to out-of-

control brain cell growth. CNS tumors represent the 17th most common cancer

with an estimated 297000 cases of CNS cancers worldwide in 2018 [13]. Due to

the high case fatality rate, CNS tumors are the 12th most frequent cause of cancer

related deaths worldwide [14]. The etiological study of CNS tumors is challenging

because of its low incidence rate and high heterogeneity.

Brain cells begin to form tumors due to their genes, environmental carcino-

gens, other medical conditions like asthma and eczema. Tumor growth pushes the

brain’s key area, blocking the flow of fluid around the brain. This blockage in-

creases pressure inside the skull and damages tissues in the brain. A tumor in a

critical area of the brain can cause severe neurological problems. The spinal fluid

plays an important role in the spread of some of the tumors to the distant areas of

the brain or the spinal cord. It leads to categorization of the tumor in the following

ways:

• A primary brain tumor, which is abnormal brain tissue growth starting in the

brain.

• Secondary (Metastatic) tumor where cancerous growth in other body parts

spreads to the brain and forms a new tumor.

A primary benign tumor is less dangerous as it does not grow, and proper

treatment may be able remove it. On the other hand, a primary cancerous tumor is



1.1. Brain Tumor

more dangerous as it proliferates and may spread to other parts of the brain or the

spinal cord. A secondary brain tumor is always cancerous. The tumor results in

different symptoms depending on its size and location in the brain. Symptoms may

include headaches, dizziness, vomiting, seizures, drowsiness, balance problems,

and numbness in the arms, legs, or face.

More than 120 tumors are known, and their nomenclature is based on their

location in the brain and the part where they begin to grow [15]. Types of tumors

based on the location are as shown in Figure 1.1. Some of the more common brain

tumors include Optic Glioma, Astrocytoma, Ependyoma, Meningioma, Oligoden-

droglioma, Pituitary Tumor, Medulloblastoma, Ependymoma, Craniopharyngioma

Brain Stem Glioma.

Figure 1.1: Location based tumor classification [3].

1.1.1 Brain Tumor Grades [1]

The grade of the tumor decides its severity and helps doctors in treatment planning.

The grade is determined from the appearance and structure of a tumor cell under a

microscope. Tumors are divided into the following four grades:

• Grade I. Benign and slow-growing tumor with similar tissue structures as the

normal tissues under the microscope. Grade I tumors do not come back after

surgical removal and this increase the life span of the patient.

2



1.1. Brain Tumor

• Grade II. It is a benign tumor similar to grade I, but it can reappear after the

surgery.

• Grade III. It is a malignant tumor with different tissue structures than normal

ones. It may come back after surgery with more severity and may spread

within the brain.

• Grade IV. The most malignant tumor with exponential growth and spread rate

which has significantly fewer chances to be cured.

A healthy brain contains three type of tissues namely, 1) Gray Matter ( GM)

tissues, 2) White Matter (WM) tissues, and Cerebrospinal Fluid (CSF). An image

of a healthy brain is shown in the Figure 1.2. The tumor in the brain creates an

additional tissue class. The tumor intensity overlaps with normal brain tissues and

in some cases the tumor is indistinguishable from the normal brain tissues. Experts

analyse medical images of the brain tumor for treatment planning.

(A) (B)

(C) (D)

Figure 1.2: Healthy brain (A)Medical Image (B) GM (C) WM (D) CSF [4].

3



1.2. Medical Image Modalities

1.2 Medical Image Modalities

Computed Tomography (CT) as well as Magnetic Resonance Imaging (MRI) are

two medical imaging techniques that are used most often in the diagnosis as well as

the formulation of the treatment plan for brain tumor.

CT imaging that is non-invasive makes use of X-ray beams. These beams

rotate around the head of the patient and produce 2D images at specific angles taken

from the sagittal, axial and coronal views. A 3D tomographic image is constructed

making use of 2D images. Ionizing radiation which is utilized in the process of CT

imaging causes harm to the human body. It has a reaction to dyes that are also used

during CT imaging.

However, MRI is also extensively utilized for taking images of the brain. As

far as Glioma tumors are concerned, MRI imaging is the most preferred technique

of observation and is extremely popular. This process makes use of the magnetic

property of the hydrogen nuclei, which the human body contains in huge amounts.

An MRI image provides detailing of the delicate tissues as well as high contrast be-

tween tissues. MRI imaging is more expensive than CT scans, although it provides

higher accuracy. 3D images are also supported by MRI imaging in three directions:

axial, sagittal and coronal.

1.2.1 MRI Physics [2]

Nuclear Magnetic Resonance (NMR) is the fundamental principle upon which the

MRI technology is based. NMR is utilized to examine molecules in spectroscopy.

Hydrogen nuclei, in the form of water exist in the human body. They contain

properties that are magnetic. These magnetic properties known as the nuclear spin

are what the MRI depends on to function. An electromagnetic field is generated by

the hydrogen nuclei when they spin around their axes. As a result of the random

spin, the entire magnetic field of the nuclei is null.

Figure 1.3 shows that these hydrogen nuclei spin in one of two ways: either

positive or the same direction as the field, or negative or the opposite direction of the

field when an external magnetic field B0 is present. The spins precess at a Larmor

4
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frequency ω0 around the axis of the magnetic field. This frequency is in proportion

to the external field. It is shown as:

ω0 =
λ ∗B0

2∗π
(1.1)

Figure 1.3: Hydrogen spin in the presence of a magnetic field [5].

A longitudinal component Mz, which is parallel to B0, and a transverse compo-

nent Mxy, which is perpendicular to B0 express the magnetic vector of the nuclei that

are spinning. The nuclei spinning towards the external magnetic field are slightly

higher in number than the nuclei spinning in the opposite direction. The result of

this is longitudinal magnetization Mz. Null transverse magnetization occurs as the

outcome of this out of phase spin precession.

B1, which is a radiofrequency (RF) pulse and is perpendicular to an external

magnetic field B0, is supplied at the resonance frequency ω0. As a result of this,

the nuclei absorb the energy which in turn causes three things to occur namely: 1)

5
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The nuclei which are spinning in the same direction to the magnetic field change

their direction which is opposite to the magnetic field direction, 2) the second event

that transpires is that there is in-phase spin precession, and 3) the net magnetization

vector tilts away from the longitudinal axis to an axis that is transverse causing the

longitudinal magnetic vector to become null at resonance as well as causing the

transverse signal to be the strongest possible signal.

The nuclei return to their state of equilibrium because they retransmit the

electromagnetic energy that they have absorbed when the RF pulse is turned off

and hence, form an NMR signal. Figure 1.4 shows the two ways in which the

phenomenon of relaxation can be observed. The two ways are longitudinal and

transversal.

Figure 1.4: Illustration of excitation and relaxation in presence\absence of RF pulse at 90◦.

Longitudinal relaxation: Also known as spin-lattice interaction is an occur-

rence where the nuclei spin gives away the lattice energy and thereby returning to

their state of equilibrium. Also, they come into alignment with the magnetic field

B0. Recovery of magnetism that is longitudinal adheres to a a tissue-specific ex-

ponential curve with T1 as the time constant. Beyond this, there is recovery of the

longitudinal magnetism up to 63% of the final value. This is shown in Equation 1.2

as:

Mz = M0(1− exp(− t
T1
)) (1.2)

M0 is the net magnetization at equilibrium. It relies on the density of the proton

and the strength of the external magnetic field.
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Transverse relaxation: Also known as spin-spin interaction relates to the pre-

cession of the nuclei that is out of phase. The recovery of the transverse magnetism

follows an exponential curve that is tissue-specific with T2 as the time constant as

shown in Equation 1.3 below:

Mxy = Mxy0 exp(− t
T2
) (1.3)

Mxy0 is the amplitude of the transverse signal following the RF pulse. Mxy0 is

equal to M0 whenever the RF pulse is perpendicular to B0. In practice, T2 is always

smaller than T1. It is these two constants that are very significant to the definition

and contrast of the images of the various MRI sequences.

There are two main parameters that are basic to an MRI sequence. Echo Time

(TE) is the primary one. This is the time between the measurement of the signal and

the RF pulse. Time that is in between the two RF pulses is the second parameter

of the MRI sequence. It is known as Repetition Time (TR). During relaxation,

subsequent to every RF pulse, the NMR signal is received and how the transverse

component evolves is displayed by it. The signal oscillates at resonance frequency

and its envelope decays exponentially. There is a correlation between the magnitude

of the longitudinal component and the initial amplitude which impacts the status of

its recovery. In the event that the longitudinal component recovers well, the signal

will be substantial.

1.2.2 MRI Modalities

The response time of various brain tissues along with the response of the tissues to

chemicals injected in the patient generate various modalities.

• T2-weighted image: T2 refers to the time taken by hydrogen nuclei to possess

their original precession phase which is disturbed by the presence of radiofre-

quency signal. T2-weighted images which are also known as T2 images for

short, have more sensitivity to water content. Hence, the pathology and the

CSF appear to be more hyper-intense in these images.

7
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• T1-weighted image: During the MRI imaging process, when the hydrogen

nuclei that are present in a tissue have to go back to the initial magnetization

state that is given by the static magnetic field, it is referred to as T1. Anatom-

ical details are better provided by simple T1 weighted images (also known as

T1 images for short) rather than T2-weighted images. However, T1 images do

not generate adequate information to support brain tumor investigation. Nev-

ertheless, they are made use of along with an injection of a contrast agent fluid

into the vascular system of the patient. The flow of the blood is highlighted in

the T1-weighted images because of the contrast agent. The area of the tumor

that is active along with the blood vessels seem to be hyper-intense and can be

distinguished with ease from the tissues that surround the area. The presence

of an active tumor is often an indication of malignancy to the experts during

a tumor investigation. MRI images like this are known as contrast-enhanced

T1-weighted images (T1c).

• FLAIR image: Fluid-Attenuated Inversion Recovery (FLAIR) is a sequence

that causes suppression of fluids and hence, in brain imaging it is utilized

for suppression of CSF. The construction of this sequence is undertaken by

flipping the longitudinal magnetic field Mz to begin with. It is flipped in

the opposite direction making use of an extra electromagnetic pulse that is

oriented at 180 degrees from the original field B0. A longitudinal relaxation

comes next after the pulse in order to go back to equilibrium, passing through

the null value. The addition of a time constraint inversion time decides when

the perpendicular RF pulse should be added. The signal of specific tissues

can by suppressed by opting the inversion time that corresponds to when the

magnitude of the signal is null. When using the FLAIR sequences, the setting

of inversion time is undertaken for the suppression of the high CSF signal that

occurs during T2 imaging. Currently, in the visualization of brain tumors, the

modality that shows the best contrast is the FLAIR sequence. In T2 images,

lesions remain hyper-intense and CSF becomes hypo-intense. In order to

distinguish the lesions from the CSF, the FLAIR sequence is utilized. It is for
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this reason that this sequence is used extensively in brain tumor imaging.

Figure 1.5 compares T2, T1, T1c and FLAIR images with the existence of a

tumor. One can observe the hyper-intense active tumor shown in the T1c image,

hyper-intense tumor and edema that are shown in the T2 and FLAIR images, and

the hypo-intense CSF in the FLAIR image.

(A) (B)

(C) (D)

Figure 1.5: MRI Images (A) T2 (B) T1 (C) T1c (D) FLAIR [6, 7, 8].

Lately newer techniques of MRI imaging such as Diffusion Tensor Imaging

(DTI) have been developed. It is this modality that enables reconstruction of the

white matter tracts connecting the different parts of the neural networks of the brain.

This is done by taking a measurement of the anisotropic diffusion of water that

is inside the tissues. The existence of a tumor can have a direct impact on the

structure of the fiber by creating disruption, displacement or infiltration. Additional

information used in diagnosing and studying tumors in the brain is provided by

modalities like the MR spectroscopy which measures significant metabolites in the

9
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tissue of the tumor and perfusion MRI which measures the relative cerebral blood

volume making use of a contrast agent.

1.3 Brain Tumor Treatment

The tumor treatment recommendation depends on the its size and type, growth rate,

and the patient’s general health. Treatment options include:

• Surgery(surgical resection): This involves the removal of a part of the tumor

or the total tumor from the skull which in turn eases the pressure on the brain

and alleviates the symptoms of the tumor.

• Radiation therapy: Traditional therapy involving radiation makes use of ex-

ternal beams of gamma rays, X-rays or protons that are directed towards the

tumor to eliminate cancerous cells and reduce the size of brain tumors. Such

radiation therapy can be undertaken in a single treatment or several treatments

that are spread out over several weeks.

• Targeted biological therapy(immunotherapy): This treatment involves mak-

ing use of the body’s own defense mechanism, namely, the immune system

to battle cancer. This type of treatment relies on markers on the surface of

tumor cells being identified.

Any of the above options can be used in tandem with the other options.

Medical image analysis is expert-dependent therefore it is subject to intra ob-

server variability. Algorithms specifically developed for brain tumor investigation

can identify the features of the tumor and delineate it in complete three-dimensional

(3D) image. The aims of any computer-based automated analysis are as follows:

1. The results that are generated by the algorithms must be reproducible and

consistently accurate.

2. The volume of the data should not overwhelm the algorithm or the computer.

3. Using a Graphical Processing Unit (GPU) along with algorithms helps accel-

erate the process of analysis.

4. Automated segmentation of the tumor reinforces human experts. This leads

to appropriate treatment-planning as well as follow-up.
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5. Data of this type can be captured at any remote location, but the processing

can be done at a centralized location.

1.4 Motivation of the Research

Human experts (neurologists, radiologists) analyze and interpret volumetric brain

MRI images to segment various brain tissues and locate the tumor. This analysis

is time-consuming. Besides, this type of segmentation is non-reproducible. Accu-

racy of brain tumor segmentation with utmost precision is desirable to plan proper

treatment like medication or surgery, and depends on human experts to a very great

extent. Computer-aided analysis helps a human expert locate the tumor in less time

and regenerates the analysis results. The intended analysis by computerized meth-

ods requires appropriate input with correct working methods. However, input to the

method may face the following challenges:

• Low Signal to Noise Ratio (SNR) and artifacts in raw MRI data are mainly

due to electronic interferences in the receiver circuits, radiofrequency emis-

sions due to the thermal motion of the ions in the patient’s body and coils,

and electronic circuits in MRI scanners. This random fluctuation reduces the

image contrasts due to signal-dependent data bias [16].

• Non-uniformity is an irrelevant additional intensity variation throughout the

MRI signal. Possible causes of non-uniformity are radiofrequency coils, ac-

quisition pulse sequence and the geometry and nature of the sample.

• Unwanted information acquired by the MR machines is information on the

skull, fat, and the skin.

• The intensity profile of MR images may vary due to a variety of MRI machine

configurations.

• Publicly available brain tumor images for computer-aided analysis are signif-

icantly less. The collection of MR images from various hospitals has privacy

or confidentiality issues.

• Class imbalance problem is another major issue in medical image analysis.

Abnormal class images might be challenging to find because abnormal classes

are rare compared to normal classes.
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1.5 Research Problems and Objectives

Research Problems

– Design an end-to-end fully convolutional neural network for robust

brain tumor segmentation.

This thesis aims to design a fully convolutional neural network for the

segmentation of Glioma brain tumors from 3D MRI images without hu-

man interaction and with less computation complexity.

– Predict the overall survival of High Grade Glioma (HGG) patients.

The objective is to extract the discriminative features of tumor after seg-

mentation to predict the life expectancy for better prognosis and further

treatment planning.

Research Objectives

1. Designing of 2D encoder-decoder architecture for brain tumor segmen-

tation.

2. Inductive transfer learning-based parameter initialization for subregion

network training.

3. Designing of 3D encoder-decoder architecture for brain tumor segmen-

tation.

4. Network training with a focal loss to weigh the hard samples for better

network training in class imbalance.

5. Tumor features selection and patients’ overall survival prediction.

1.6 Outline of the Dissertation Report

The thesis is divided into six chapters, as follows:

• Chapter 1 introduces the domain.

• Chapter 2 shows the pre-processing techniques, dataset, post-processing tech-

niques, and evaluation metrics.

• Chapter 3 covers the literature review on non-deep learning and deep learning

methods for tumor segmentation.

• Chapter 4 presents three proposed approaches for brain tumor segmentation.
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• Chapter 5 demonstrates the overall survival prediction approach with the fo-

cus on feature selection.

• Chapter 6 includes the conclusion and future direction.

13



Chapter 2

Preliminaries

This chapter focuses on MRI image pre-processing and post-processing techniques,

availability of benchmark datasets, and various evaluation measures.

2.1 Pre-processing Techniques

MRI image pre-processing techniques prepare data at the lowest level of abstraction,

improving the image for segmentation. Pre-processing removes unwanted informa-

tion from the input, cleans noisy images, resamples and orients the images with a

reference image for feature extraction of the same location from multiple images.

Pre-processing typically consists of: 1) image registration or image resampling, 2)

bias field correction, 3) brain extraction or skull stripping, and finally 4) intensity

normalization. In the case of publicly available datasets that are typically partially

pre-processed, further pre-processing is carefully chosen based on the need.

2.1.1 Image Registration

The head movement of the patient at the time of acquisition leads to the need for

image registration. Image registration resamples the image and orients it to the

same image space. It helps to capture the features from the exact location of differ-

ent images. Image registration is required in two cases: 1) orientation variation of

the input images, 2) orientation variation of multiple modalities of the same input

image. In the first case, all the images of the input are resampled to the reference

anatomical template. Figure 2.1 illustrates the co-registered image with the refer-

ence image.
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(A) (B)

(C)

Figure 2.1: Pre Processing: Image Registration [9] (A) Original Slice (B) Rotated Slice (C)
Registered Slice.

In the second case, the image co-registration is applied with affine registration,

where initially all modality images are registered among themselves, followed by

registration to the reference anatomical template.

2.1.2 Skull-Stripping

The brain image contains non-brain and unnecessary tissues of the head like skin,

fat, skull. Skull-stripping eliminates such non-brain tissues from the MRI images

and speeds up the prognostic and diagnostic procedures. Figure 2.2 shows the brain

image with skull and with skull-stripping.

2.1.3 Bias Field Correction

The bias field is a low-frequency smooth intensity variation across the image, which

changes the same tissue’s appearance at different locations. Bias field can be intro-

duced by 1) imperfect image acquisition process of scanner 2) anatomy especially
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(A) (B)

Figure 2.2: Pre-processing: Skull-stripping (A) Slice with skull (B) Slice with skull-
stripped [10].

due to shape, position, orientation, and magnetic permeability of the patient [11]. In

general, the bias field is assumed to be additive or multiplicative. The additive form

stems from the superposition of the magnetic field in the MRI. The multiplicative

form comes from the sensitivity of the reception coils in the MRI [17]. The N3 bias

field correction algorithm is an iterative scheme on the model based on B-spline

least-squares fitting. The improvement to N3 bias field correction is N4 bias field

correction [18], which iteratively calculates the residual bias fields instead of the

total bias fields. N4 bias field correction employs multiresolution approximation

with faster execution time. Figure 2.3 illustrates the N4 bias field correction of a

FLAIR image, together with their extracted additive bias field.

2.1.4 Intensity Normalization

Individual voxel intensity in MR images does not reflect any physical quantities,

and interpretation is possible within specific intensity distribution only. The in-

tensity distribution of MR images varies depending on the scanning protocol and

various other scanner specific parameters, which leads to the different intensity

distribution of the same object. If segmentation or classification algorithms are

based on voxel intensities and intensity distributions, it is necessary to standardize

the intensity range. Intensity normalization pre-processing normalizes, scales, or

aligns the voxel intensity distribution to the customized range. Typically used in-

tensity normalization techniques are z-score normalization, intensity scaling, and
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(A) (B)

(C)

Figure 2.3: Pre-processing: Bias Field Correction (A) Original Slice (B) Bias field (C)
Corrected Slice [11].

histogram-matching.

2.2 Dataset

2.2.1 Segmentation Task

Literature proposes various methods for brain tumor segmentation. All the methods

claim their superiority and usefulness in some way. Initially, all such techniques

work on the images taken from some hospitals or radiology laboratories, which are

private. Disclosure of those images to the other researchers was not allowed, deter-

ring a comparison of different methods. Publicly available datasets and evaluation

frameworks compare and evaluate methods on the same measure. The Multimodal

Brain Tumor Segmentation [6, 7, 8] challenge dataset, widely known as BraTS is

one such publicly available dataset for brain tumor related challenges. This dataset

widely used for segmentation task and overall survival prediction task. It contains
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Low Grade Glioma (LGG) and High Grade Glioma images. The dataset has the

following characteristics:

• It contains multi-parametric MRI scans in T1, T1c, T2, and T2-FLAIR volumes.

Initially the scans were pre and post-operative. Later on the post-operative

scans were omitted since 2014.

• The dataset contains images with 2D or 3D clinical protocols and 1.5T or 3T

scanners from multiple institutions.

• The dataset set includes images with pre-processing for harmonization and

standardization without affecting the apparent image information.

• The individual scan is co-registered to the T1 reference anatomical tem-

plate and interpolated to a uniform isotropic resolution (1mm3) with skull-

stripping.

Initially, the dataset’s clinical images were significantly few. It was challeng-

ing to compare methods based on the results of such a small number of images.

Comparison is possible with an increase in the number of sample images and ac-

curate generation of the ground truth images. The ground truth is generated based

on the evaluation by more than one expert to avoid inter-observer variability. Each

scan has the dimension of 240x240x155 (Height (H) x Breadth (B) x Depth (D)) .

The growth of the dataset from its inception is as shown in Table 2.1.

Four different intra-tumoral structures are useful for ground truth generation:

edema, enhancing core, non-enhancing core, and necrotic core, as shown in Fig-

ure 2.4. The expert raters had annotated each case manually. Those segmentation

results of each case were fused to obtain a single unanimous segmentation for the

ground truth.

The segmentation task focuses on the proper segmentation of the tumor sub-

structures. The validation of the segmentation methods is based on: 1) Whole

Tumor (WT): all intra-tumoral substructures, 2) Tumor Core (TC): enhancing,

necrotic, and non-enhancing core substructures, and 3) Enhancing Tumor (ET): en-

hancing core substructure.

18



2.2. Dataset

Table 2.1: Growth of the BraTS dataset [6, 7, 8].

Year Total Im-
ages

Training
Images

Validation
Images

Test Im-
ages

Tasks Type of Data

2012 Clinical:45
Syn-
thetic:65

Clinical
data:
30(20HGG
+ 10LGG),
Synthetic
data:
50(25HGG
+ 25LGG)

N/A Clinical
data:15
Syn-
thetic
data:15

Segmentation Pre and post oper-
ative scans

2013 65 51 HGG,
14 LGG

N/A Clinical:25
Challenge:
10

Segmentation Pre and post oper-
ative scans

2014 238 200 N/A 38 Segmentation,
Disease
Progression

Pre-operative,
Longitudinal

2015 384 220 HGG,
54 LGG

N/A 110 Segmentation,
Disease
Progression

Pre-operative,
Longitudinal

2016 465 220 HGG,
54 LGG

N/A 191 Segmentation,
Disease
Progression

Pre-operative,
Longitudinal

2017 477 210 HGG,
75 LGG

46 146 Segmentation,
Survival
Prediction

Pre-operative,
Longitudinal

2018 542 210 HGG,
75 LGG

66 191 Segmentation,
Survival
Prediction

Pre-operative,
Longitudinal

2019 626 259 HGG,
76 LGG

125 166 Segmentation,
Survival
Prediction,
Uncertainty
Prediction

Pre-operative,
Longitudinal

2020 660 293 HGG,
76 LGG

125 166 Segmentation,
Survival
Prediction,
Uncertainty
Prediction

Pre-operative,
Longitudinal
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(A) (B) (C)

(D)

Figure 2.4: The appearance of intra-tumoral structures on three imaging modalities with
manual annotations. (A) Top: whole tumor (yellow), Bottom: FLAIR, (B) Top: tumor
core (red), Bottom: T2, (C) Top: enhancing core structures (light blue), surrounding the
cystic/necrotic core structure (green), bottom: T1c, (D) Fusion of the three labels [12].

2.2.2 Overall Survival Prediction Task

The additional task of Overall Survival (OS) prediction was introduced in the BraTS

challenge in 2017. This task focuses on the OS prediction of HGG patients. The

dataset includes age and survival days along with resection status: Gross Total Re-

section (GTR) or Sub Total Resection (STR) information for HGG patients in addi-

tion to the images. The task is to classify the patients into long-term survivors (OS

days >15 months), mid-term survivors (OS days between 10 to 15 months), and

short-term survivors (OS days <10 months) [19]. A detailed description of the OS

information available since BraTS 2017 challenge is given in Table 2.2.
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Table 2.2: The distribution of BraTS dataset [6, 7, 8] features in survival classes.

Year # Records Features
Short-term Survivors (<10 months) Mid-term Survivors (between 10 to 15 months) Long-term Survivors (> 15 months)

Count Age
(µ±σ )

OS
Days(µ±
σ )

Count Age(µ±
σ )

OS
Days(µ±
σ )

Count Age
(µ±σ )

OS
Days(µ±
σ )

2017 163 Age 65 65.44 ±
10.68

147.44
±
83.08

50 58.70 ±
11.26

394
±
49.32

48 55.11 ±
12.19

826.23
±
370.91

2018 163 Age 65 65.44 ±
10.68

147.44
±
83.08

50 58.70 ±
11.26

394
±
49.32

48 55.11 ±
12.19

826.23
±
370.91

2019 212 Age, Re-
section
status

82 66.66 ±
11.42

150.21
±
84.72

54 59.14 ±
10.98

377.43
±
40.44

76 57.16 ±
11.84

796.38
±
354.32

2020 236 Age, Re-
section
status

89 66.37 ±
11.15

149.64
±
82.03

60 59.27 ±
10.67

375.36
±
43.42

87 57.29 ±
11.58

796.40
±
343.39

2.3 Post-processing techniques

The segmentation output generated by computer-assisted methods may contain false

segmentation in the image due to improper or incorrect feature selection. The seg-

mentation improves by applying post-processing techniques like:

2.3.1 Connected Component Analysis

Connected Component Analysis (CCA): It groups the voxels based on the connec-

tivity depending on similar voxel intensity values. Connected components that are

very small are excluded from the result. Such components are considered to be false

positives due to spurious segmentation results.

2.3.2 Conditional Random Field

Conditional Random Field (CRF): Typically classifier predicts the voxel class based

on the features related to that voxel, which does not depend on the neighbouring re-

lationship of that voxel with other nearby voxels. CRF considers this relationship

and builds a graphical model to implement the dependencies between the predic-

tions.

2.3.3 Morphological Operations

Such operations are applied to adjust the voxel value based on its neighbourhood

according to the size and shape of the tumor.

2.4 Evaluation Metrics

The standard evaluation framework for tumor segmentation and OS prediction in-

cludes the following metrics.
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1. Dice Similarity Coefficient (DSC) (or F1 measure): It is the overlap of two

objects divided by the total size of both the objects. True Positive (TP) is

the outcome where the model correctly predicts the positive class. In con-

trast, False Positive (FP) is the outcome where the model incorrectly predicts

the negative class to be positive. False Negative (FN) is when the model in-

correctly predicts the positive class to be negative. This is represented by

Equation 2.1 below:

DSC =
2T P

2T P+FP+FN
(2.1)

2. Jaccard Similarity Coefficient: It is known as the intersection over the union

of two different sets as shown in Equation 2.2 below:

Jaccard =
T P

T P+FP+FN
(2.2)

3. Sensitivity: It is a measure that correctly identifies tumorous voxels. This is

shown in Equation 2.3 below:

Sensitivity =
T P

T P+FN
(2.3)

4. Hausdorff Distance(HD): It measures how far two subsets of a metric space

are from each other. If x and y be two non-empty subsets of a metric space

(M,d), then their Hausdorff distance dH(x,y) can be defined by:

dH(x,y) = max{sup
x∈X

in f
y∈Y

d(x,y),sup
y∈Y

in f
x∈X

d(x,y)} (2.4)

Where sup represents the supremum and inf the infimum.

5. Accuracy: It is defined to be the quality of being precise. True Negative (TN)

is the outcome where the model correctly predicts the negative class as shown

in Equation 2.5 below:

Accuracy =
T P+T N

T P+FN +T N +FP
(2.5)
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2.5 Summary

The chapter includes the basic pre-processing techniques: image registration, skull-

stripping, bias field correction, and intensity normalization. The BraTS dataset

contains the images which are co-registered and skull-stripped. The anatomy and

scanner specific image intensity variation is addressed by the bias field, which is

removed widely by N4 bias field correction [18]. The intensity normalization tech-

niques scale the image intensities to the specified range. The z-score is a widely

used normalization technique for MRI images. Post-processing improves the seg-

mentation results by fine-tuning the segmentation map and correcting the false seg-

mentation. The chapter introduces the BraTS incremental dataset [6, 7, 8], a pub-

licly available dataset containing HGG and LGG images, with 45 images in the

2012 dataset to 660 images in the 2020 dataset. Initially, the dataset was used to

address only the segmentation task, but gradually, the growth of dataset has incor-

porated the survival prediction task since 2017. The dataset also provides features

like age, resection status, and survival days for HGG images with GTR and STR

as resection status to address the OS prediction task. The most widely used eval-

uation measures for segmentation (DSC, specificity, Hausdorff distance) and OS

prediction (accuracy) is covered at the end of the chapter.
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Chapter 3

Literature Review

Automated or semi-automated brain tumor segmentation methods facilitate image

interpretation, which is less time-consuming and reproducible. From the late 90s,

brain tumor segmentation has gained the focus of researchers. Various algorithms

have been developed to address the task of brain tumor segmentation which has

been divided into conventional methods and Fully Convolutional Neural Network

(FCNN) methods.

3.1 Conventional Brain Tumor Segmentation Methods

Conventional methods can be categorized into three groups: 1) the first group is

made up of basic methods, 2) the second one is made up of generative methods, and

3) the third one is made up of discriminative methods [20]. Basic and generative

methods can be interactive and non-interactive. Interactive methods require input

from the user for processing, like tumor seed point, tumor diameter, or boundary

selection. Non-interactive methods do not require user input.

3.1.1 Basic Methods

Threshold-based methods [21] use either the gray level of a pixel or the histogram

of an image. Many thresholds are utilized for each distinct region in the event that

the image contains multiple regions, each having a broad range of pixel values.

The basis of Edge methods [22, 23] is detecting the boundaries that exist be-

tween each of the region of the images. Edge based features play an important role

for region characterization based on grayscale. Such features represent a disconti-

nuity. The basis of the discontinuity is one of the following three: gray level, colour



3.1. Conventional Brain Tumor Segmentation Methods

or texture. Multiple operators like Sobel, Laplacian, Laplacian of Gaussian (LoG)

are available to detect edges.

Region methods [24, 25] utilize values of pixels for the definition of homo-

geneity criteria for these particular methods. Texture methods [26, 27] make use of

structural, spectral, or statistical features. Pixel intensity properties form the basis

of the tone of a texture, and the structure relies on the spatial pixel relationship.

Statistical features are procured from the values of pixels. These features includes

variance, mean, median, kurtosis, and other higher-order statistics features.

3.1.2 Generative Methods

One of the most powerful techniques of segmenting brain tumors is the atlas based

segmentation [28]. It forms an atlas or a look up table by using data on the size,

shape and features of various organs. It is very much like techniques based on

correlation and it conducts classification and segmentation in parallel.

In [29], the authors initially identified abnormal brain tissues by registering the

tumorous brain image with healthy brain atlas image. This step was followed by

identifying the presence of an edema using T2 images, and finally, geometric and

spatial constraints were applied to detect the tumor and edema regions.

In order to match the patient globally, the authors in [30] applied an affine

transformation to the atlas image. The Adaptive Template Moderated Spatially

Varying statistical Classification (ATMSVC) algorithm was brought into use for

the segmentation of the lesion. An expert seeded this atlas manually making use of

just one voxel that was placed on the estimated origin of the patient’s lesion. The

next step was to use a non-linear registration algorithm with the model of the growth

of the lesion deforming the seeded atlas in order to match the patient. The imple-

mentation of the model was conducted making use of four volumes of the contrast

enhanced agent with meningioma.

The paper [31] applied a semi-automatic method, which required user input

to give the seed point for the tumor, a radius for each tumor, and a seed point for

each regular tissue class. The random walk generated tumor priors using initial tu-

mor seeds. The patient-specific atlas was modified to accommodate tumor classes,
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using a tumor growth model. The empirical Bayes model used the Expectation

Maximization (EM) framework to update the posterior of the tumor, growth model

parameters, and a patient-specific atlas. This work was then extended in [32]. In-

stead of a single seed point for various labels, multiple seed points were considered

to find the intensity mean and variance of a specific label. This work focused on

preoperative MRI scans. It was further extended in [33] to include post-operative

scans and additional features to the Gaussion Mixture Model (GMM). Here the need

for manual selection of the seed point was also omitted.

Model-based techniques [28] depend on the fact that the structure of the brain

has a repetitive geometry. Hence, this makes it possible for the method to be mod-

elled probabilistically in order to capture the variations in geometry and shape. The

training data also needs to be registered. Internal forces and external forces are

utilized by deformable models for the segmentation of the tumor on the basis of

physics, geometry as well as data based on approximation. However, there are

some concerns with these methods and they are: 1. Decision about the initial model

and the selection of its parameters needs manual intervention; 2. low convergence

properties.

The techniques based on models use random fields. For example, in order to

label a voxel, use is made of the Markov random field taking into account its reliance

on the voxels in the neighbourhood. An undirected graph can be used to represent

this type of dependency. These types of models are based on the assumption the

neighbouring voxels rely on each other and that the modelling takes on a form

that is simply factorized. In [34], a Random Walk (RW) based interactive and an

iterative method was applied to fine-tune the tumor boundary. RW was applied as

an edge-weighted graph in the discrete feature space based on the variation of the

distribution density of the voxels in the feature space. The user made an initial

tumor seed selection for tumors as well as edema. Afterwards, RW was applied to

the feature space as well as on the image. If the user did not approve the results,

then the segmentation process was reinitiated.

In [35], a Hidden Markov Random Field (HMRF) based model was used with
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modified Pott’s Model to panelize the neighbouring pixels belonging to different

classes. In [36], various modality intensity images and their neighbourhood voxel

intensities were fed into the map-reduced Hidden Markov Model (HMM), and the

model was corrected iteratively based on class labels.

In [37], a Gabor filter bank based Bayesian classification was followed by an

MRF classification. Initially, each voxel was divided into its constituent class by

applying the Gabor filter bank to the input vector (made up of intensities of four

modalities at a voxel) to classify the voxel into five different classes (GM, WM,

CSF, tumor, and edema). Next, an MRF based classifier was applied to the tumor as

well as edema classes. It used voxel intensity and spatial intensity differences over

the neighbouring voxels. [38] used a Non-negative matrix to find voxel clusters,

which showed the tumor and level set methods to fine-tune the region boundary.

3.1.3 Discriminative Methods

Soft computing forms the basis for discriminative segmentation techniques. They

can be categorized into two types: unsupervised and supervised. Most of the un-

supervised forms are based on the idea of clustering. It learns the voxel reltionship

as well as gain the knowledge about decision boundaries from unlabelled data. It

depends on natural feature grouping in multidimensional space without utilizing the

domain knowledge. K-means clustering is the widely used unsupervised approach

which makes crisp sets by partitioning brain tissues, whereas fuzzy C means clus-

tering considers partial volume effect of the voxels for clustering. The shape and

size of the clusters may differ. The limitation of the fuzzy C-means exists because

the sensitivity of the partition matrix gets stuck in the local minima.

The supervised form requires the presence of training data for model learning.

Artificial Neural Network (ANN) [39] is made up of numerous neurons that are

interconnected. Adaptation of the free parameters of ANN during the process of

training is how the ANN learns. Later on in the process, this knowledge is used to

classify test patterns without any concern for the input-output functional relation-

ship. In [40], tensor features were extracted along with mean, entropy, and standard
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deviation features. Authors in [41] extracted features for super voxels from multi-

scale images and created sparse feature vectors to segment the whole tumor.

Random Decision Forest (RDF) has achieved remarkable success for tumor

segmentation. Authors in [42] used context-aware spatial features and tissue ap-

pearance probability generated by GMM to train the decision forest. [43] worked

on Random forest classification with CRF regularization to predict tissue probabil-

ity in multiple classes, i.e., GM, WM, CSF, edema, necrotic core, and enhancing

tumor. A 28-dimensional feature vector included the intensity of each modality

along with first-order statistics like mean, variance, skewness, kurtosis, energy, and

entropy computed from local patches around each voxel in each modality.

In [44], Extremely Randomized Trees (ExtraTrees) was used, which introduces

more randomness at training time. The classifier was trained on 208 features ex-

tracted from all the four modalities, including intensity values, local histograms,

first-order statistics, second-order statistics, and basic histogram-based segmenta-

tion. In the paper, the ExtraTrees trained with the best threshold rather than the

individual features threshold. In [45], pixel classification was done with ten random

forests with ten trees each. They were trained to reduce the training time and finally

merge into a single forest with Gini impurity. One thousand samples for the tumor-

ous class and 1000 samples for the non-tumorous class train the RF. Classification

forest in [46] used 237 features, which included appearance specific features (image

intensities, first-order texture features, and gradient features) and context-sensitive

features (ray feature, symmetry intensity difference features).

In [40], tensor features were extracted along with mean, entropy, and stan-

dard deviation features. Authors in [41] extracted features for super voxels from

multi-scale images and created sparse feature vectors to segment the whole tumor.

Substructures of the tumor were then separated using CRF.

Appendix B, Table B.1 includes the comparison of the conventional methods

for the pre-processing, dataset, number of images and DSC.
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3.2 Initial Implementation: K-means Clustering

K-means clustering is made use of for partitioning data into K-clusters. Based on

similar features, the K-means clustering groups data points. It creates distinct clus-

ters for dissimilar data points. Distance measures like Euclidean distance or Man-

hattan distance are used to group feature vectors.

Post-processing is applied in the removal of voxels that are non-tumorous. The

size of a given neighbourhood is considered in the removal of these voxels. For

the process of segmentation, three types of neighbourhoods are taken into account

namely, 6, 18 and 26 [47]. The assigning of a label to a voxel of interest is done

by majority voting amongst its neighbours. In the process of assigning a label, the

majority voting for 6, 18, and 26 neighbourhoods make use of 5, 17 and 25 pixels

in a neighbourhood. Figure 3.1 depicts the output of the K-means clustering.

(A) (B) (C)

(D) (E) (F)

Figure 3.1: (A) FLAIR image slice, (B) ground truth slice, (C) K-means segmentation
slice, (D) 6-neighborhood post-processed slice, (E) 18-neighborhood post-processed slice,
(F) 26-neighborhood post-processed slice.

As can be seen, segmentation that is done with no post-processing is extremely

noisy. The segmentation results in this case are generated with numerous false

positives. Noise can be removed with the application of K-means. The second

observation that is made is that as the size of the neighbourhood increases, the

process of cleaning greatly improves. It is the fact that voxels in the neighbourhood
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Table 3.1: 2D slice DSC for BraTS 2015 dataset.

Six
Neigh-
bourhood
T2

Six
Neigh-
bourhood
FLAIR

Eighteen
Neigh-
bourhood
T2

Eighteen
Neigh-
bourhood
FLAIR

Twenty
Six
Neigh-
bourhood
T2

Twenty
Six
Neigh-
bourhood
FLAIR

Patient 1 0.447 0.172 0.448 0.171 0.450 0.168

Patient 2 0.420 0.442 0.421 0.442 0.425 0.445

Patient 3 0.337 0.471 0.338 0.473 0.344 0.477

Patient 4 0.000 0.066 0.000 0.066 0.000 0.066

Patient 5 0.447 0.327 0.446 0.329 0.447 0.326

have a tendency to be alike that leads to improvisation because of K-means. The

application of K-means to BraTS 2015 images can be seen in a different experiment.

Table 3.1 shows the DSC outcome of the experiment on five images with varying

neighbourhoods.

An increase in the size of the neighbourhood brings about an improvement in

the results of the segmentation. However, the segmentation shows no improvement

overall since this technique localizes to the neighbourhood. This confirms that K-

means on image pixels does not lend itself well for segmentation of brain tumors.

3.3 Limitation of Conventional Methods

The limitations associated with the methods working on handcrafted features are as

follows:

1. Identifying tissue probability classes: Tumor tissue intensities overlap with

that of the healthy tissues; in such a case identifying the probable class for

tumorous tissue is quite challenging.

2. Atlas matching (healthy or tumorous atlas): Usually, the brain atlas con-

tains the normal brain tissue distribution map. Due to the deformation of

the healthy tissue by the tumor, the atlas matching of a tumorous brain may

result in the wrong map.
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3. Manual seed point identification for the tumor or its subparts: Almost all

semi-automated methods require some initial selection for the tumorous

voxel, its diameter, or its rough outer boundary. The selection depends on

the expert. Its repetition over all the slices of the brain is a time-consuming

task.

4. Feature extraction from the images: RF training depends on the features ex-

tracted from the brain images. All the MRI modalities contain different bio-

logical information. This variation in the information complicates the tasks

of feature extraction as well as selection, to training RF.

5. Discontinuity: The results generated by such methods are spurious, which in-

creases the chances of false segmentation. Proper post-processing techniques

are required to fine-tune the generated results.

The limitations of the conventional methods raise the need for methods which

are non-interactive, fast, and can extract features automatically from the given input.

The next section addresses the solution to this.

3.4 Deep Neural Network

Deep Neural Network (DNN) is an artificial intelligence function that does data

processing and creates patterns for decision making by extracting and learning the

features from the input. The success of DNN can mainly be attributed to the fol-

lowing four reasons:

1. The DNN models solve problems in an end-to-end manner from simple to

complex feature learning from the input. Automatic feature learning has elim-

inated the need for domain expertise.

2. Computational capabilities of the hardware in terms of GPU and efficient

implementation of the GPU model with various open-source libraries have

made the training of the DNN faster than CPU.

3. Efficient optimization techniques for robust learning contribute to the success

of DNN for optimal network performance.
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Figure 3.2: General pipeline for DNN tumor segmentation.

4. The availability of benchmark datasets allows training and testing of various

deep learning models to be implemented successfully.

The general block diagram of any DNN is, as shown in Figure 3.2. The crucial

task is to get a labelled data set. After the availability of the dataset, it is divided

into training and validation sets, followed by appropriate pre-processing techniques

as per the task on hand. Actual DNN applies to the training data, which makes

the network learn the network parameters. The output of DNN is spurious in some

brain areas, and post-processing fine-tunes the segmentation result. Finally, the

evaluation framework measures the performance of the network.

3.4.1 Evolution of DNN

In medical image analysis, a semantic segmentation task is common, e.g., organ seg-

mentation, lesion. Convolutional Neural Network (CNN), a specific type of DNN

architecture, gained its popularity since 1990 with the architecture of LeNet [48].

The authors suggested a two layer CNN architecture. After the availability of fast

GPUs and other computing facilities, over fifteen years later, AlexNet was proposed

by authors in [49] with five convolutional layers.
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3.4.2 Design Aspects of CNN

The CNNs are designed with: 1) various layers like convolution layers, non-

linearity layers, pooling layers, fully connected layers 2) regularization techniques,

3) optimization techniques, 4)loss functions, and 5) network parameter initializa-

tions and normalization. Authors in [50, 51] have explained the architectural ele-

ments of CNN nicely, which are as follows:

• Convolution layer: extracts representative features from the input. It

achieves: 1)weight-sharing mechanism, 2)exploits local connectivity of in-

put, and 3) provides shift invariance to some extent.

• Non-linearity layer: provides a sparse representation of the input space,

which achieves data variability invariance and computationally efficient

representation. Types of non-linearity layers are Rectified Linear Unit

(ReLU), Leaky ReLU (LReLU), Parametric ReLU (PReLU), S-shaped ReLU

(SReLU), Maxout and its variants, Exponential Linear Unit (ELU) and its

variants.

• Pooling/subsampling layer: extracts prominent features from the non-

overlapping neighbourhood. It is used to: 1) reduce the number of param-

eters, 2) reduce over-fitting, and 3) achieve translation invariance. There are

two pooling methods that are used very commonly and they are average pool-

ing and max pooling.

• Fully connected layer: converts 2D features to a 1D feature vector. It helps

to predict the input image class label.

• Loss functions: improve the learning process by improving within-class sim-

ilarity and between-class separability.

• Regularizations: deal with over-fitting issues. Commonly used regulariza-

tion techniques are L1 and L2 regularizations, dropout, early stopping, batch

normalization.

• Optimization: used for proper updates of network parameters during back-

propagation. Various techniques of optimization include Nesterov acceler-

ated gradient descent, adaptive gradient algorithm (Adagrad) and Root Means
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Square Propagation (RMSProp).

• Weight initialization and normalization: boost the learning process by

helping the weight update with proper initial values.

The convolution layers extract features from the input by applying kernels to

it. The output feature map depends on the type of kernel and its size. At the initial

layers, simple features are extracted from the input like edge or lines. The gradual

increase of the network depth requires a higher number of feature maps to extract

complex shapes [20]. The activation function is applied to the feature maps to learn

the non-linear relationship within the data and it allows the errors to back-propagate

to the initial layers for accurate parameter updates. An increase in the network depth

exponentially increases the network parameters, which is computationally very ex-

pensive. Pooling layers are introduced to down-sample the input feature maps and

reduce its spatial size by considering only prominent features. Fully connected lay-

ers at the end of the network flatten the results of the input layers before actual

classification. The loss function at the classification layer calculates the error in the

prediction. Based on this error, the network parameters are updated using gradient

descent methods by back-propagation. Commonly used loss functions are:

• Cross Entropy loss function:

J =− 1
N

(
∑

voxels
ytrue · log ŷpred

)
(3.1)

• Dice Loss function:

J = 1−
2∑voxels ytrueypred + ε

∑voxels y2
true +∑voxels y2

pred + ε
(3.2)

Here, N =Number o f voxels, ytrue = ground truth label, and ypred = network predicted label.

3.4.3 CNN Architectures

The CNNs, with convolution layers followed by fully-connected layers, classify

the entire image in a single category. GoogleNet(Inception) [52] and InceptionV3

[53] networks have introduced the inception module, which implements kernels of
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different sizes to reduce network parameters. ResNet [54] has introduced a residual

connection between the convolution layers such that it learns the identity function,

which allows practical training of deeper networks. In DenseNet [55], layers are

very narrow and add significantly fewer feature maps to the network, allowing them

to design deeper architectures and training. Each layer has direct access to the

gradient of the loss function.

For semantic segmentation, CNN can classify each voxel of the image indi-

vidually by presenting it with several patches extracted around the particular voxel.

Each voxel of the image is classified with the same process, resulting in segmen-

tation of the entire image. This ‘sliding-window’ approach repeats the convolution

operations for adjacent patches of neighbouring voxels. The improvement of this

approach is replacing fully-connected layers with convolution layers, which gener-

ates the probability map of the entire input image rather than generating output for

a single voxel. Such networks are known as FCNN. FCN [56] is a type of FCNN

where skip connections are introduced to reconstruct a high-resolution image.

U-net [57] is a very well known, highly adapted network architecture for tumor

segmentation. It has taken the encoder-decoder approach where every encoding

layer is connected with its peer decoding layer with skip connection to reconstruct

the dimension and get detailed spatial information from the encoding layer. SegNet

[58] and DeepLab [59] are the other types of FCNN architectures adopted to solve

brain tumor segmentation.

3.4.4 Handling Class Imbalance Problem

In medical image analysis, the class imbalance issue exists at two levels. At the first

level it exists because the number of abnormal images is very small compared to

the normal images, which results in class imbalance. At the second level, within the

abnormal images found, even on a single brain slice, the volume of the tumorous

tissue compared to the non-tumorous tissue is very small, again resulting in a class

imbalance issue. Also, finding the number of abnormal images compared to the

normal images is difficult as an abnormality like the tumor is rare. All images in this

thesis are of the tumor. The proportion of the Brain Volume (BV) and Background
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Volume (BGV) with respect to the tumor volume for the BraTS 2020 dataset is as

shown in Table 3.2. It can be observed that TV proportion is extremely small.

Table 3.2: The proportion of Non Tumor Brain Volume (NTBV) and Non Tumor Back-
ground Volume (NTBGV) vs. Tumorous Volume(TV).

%
NTBV

% Necrosis % Edema % ET

BV 93.10 1.53 4.00 1.37

BGV 98.88 0.25 0.65 0.22

The following approaches address data imbalance problem.

• Patch sampling: The patch sampling-based method can mitigate the imbal-

anced data problem. The sampling process includes equiprobable patches

from all the tumorous regions as well as the non-tumorous region.

• Improvement in loss functions: Some of the loss functions, when used in their

raw form, may not suit the tumor segmentation task, as they consider balanced

datasets. These functions adopt an imbalanced dataset with some modifica-

tions. Some of those functions are weighted cross-entropy, generalized dice

loss, focal loss functions.

• Augmentation techniques: Mostly, a lot of the labels for training are unavail-

able for multiple reasons. In order to label the dataset, an expert in this field is

required, which turns out to be costly as well as time-consuming. One method

for reducing over-fitting and increasing the volume of the training data is data

augmentation. By transforming images in the training dataset, it creates new

images. Such images are translated, flipped, rotated, scaled, distorted and

also some noise such as Gaussian noise is added.

3.4.5 CNN Approaches for Brain Tumor Segmentation

The classification of CNNs for brain tumor segmentation depends on the input and

output type, CNN design with or without ensemble approach. The possible combi-

nation for network design is as shown in Figure 3.3.
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Figure 3.3: CNN design approaches.

Input type: The network may take 2D/3D input in the form of patches or

images. With fully-connected layers, CNN classifies the centre voxel of the

patch, whereas FCNN predicts multiple or all voxels of the patch/image. The

network may take multi-scale patches to extract coarse and fine details of the

input.

Output Type: The output of the network depends on the problem to solve.

It predicts a single output for the classification problem and multiple voxel

outputs for the semantic segmentation problem.

Type of network: The CNN approach indicates the convolution network with

fully-connected layers at the end, whereas FCNN indicates the network with

all convolution layers.

Ensemble Approach: The Ensemble approach can be classified into cas-

caded and parallel approaches. In the cascaded approach, multiple networks

combine in series to fine-tune the end output. The input of one network de-

pends on the output of the other. In the parallel approach, multiple networks

work in parallel and take the same/different input to gather the comprehensive

details of the input. The final output of the network is decided based on the

majority voting or averaging all the network outputs.
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3.4.6 Brain Tumor Segmentation using CNN and FCNN

Initially, shallow CNN performs voxel-based image segmentation. The authors in

[60] proposed a voxel-wise classification using CNN multipath way architecture.

One pathway used 2D patches of size 32x32, and the other used fully-connected

input of 5x5 patch size having the center pixel the same as a 32x32 patch. Patch

selection was made such that the labels are equiprobable. L1 and L2 regularizations

overcome overfitting. In [61], voxel-wise class probability prediction used separate

3D CNNs for HGG and LGG images. The final probability classified the voxel into

six classes. In [62], a five layer deep 2D CNN architecture performed voxel-wise

classification.

Gradually the depth of CNN had increased to accommodate more layers in the

network. In [63], a 2D deep CNN with fully connected output layers separated HGG

and LGG. This approach was further extended by [64] with a two-phase process and

a weighted loss function-initially. The network trained using equiprobable patches

that followed actual patch training without the class imbalance problem. In [65], the

authors designed a 2D Input Cascaded CNN, which took the output of a Two Path

CNN to train other 2D CNNs with input images. After successfully implementing

an FCN the authors in [56, 66] proposed a two pathway architecture, where both

pathways included residual connections and trained on different input patch sizes.

As the network was fully convolutional, output labels of multiple voxels could be

generated at a time.

In [67], the authors used the 2D FCNN approach along with CRF. The FCNN

trained on patches and CRF on slices. In [68], cascaded encoder-decoder like FC-

NNs along with residual connections were proposed. The first FCNN segmented the

whole tumor, followed by internal tumor region segmentation by the second FCNN.

Authors in [69] proposed an encoder-decoder FCNN based architecture to segment

various tumor subregions. In [70], the authors proposed three different FCNN archi-

tectures and showed that the architectures with multiresolution features performed

better than single-resolution architectures. Authors in [71] implemented Dilated
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Residual Network for patch-based training where equiprobable patches were sup-

plied to the training network.

Authors in [72] adopted a U-net architecture for brain tumor segmentation.

Authors in [73] modified the U-net, which took 3D input, and the depth of the

network reduced to three. Authors in [74] optimized the training of the network

proposed in their previous work [75]. In [76], the authors proposed a novel encoder-

decoder architecture that worked well on multiple biomedical image segmentation

problems.

An ensemble of CNNs performs better compared to a single CNN, as in [77],

where authors implemented an ensemble of seven networks using DeepMedic,

FCN, and U-net along with variations of those three networks. They also tried

three different approaches for pre-processing on all these networks. The output of

individual networks with all the pre-processing generated the final label. Authors

in [78] extended their work proposed in [69], where the dense module and dilated

module were introduced in the encoder-decoder cascaded architecture of two net-

works. The pooling layers were replaced with dilated convolution layers.

The authors in [79] implemented an ensemble of ten encoder-decoder based

architectures, which included the auto-encoder stream to reconstruct the original

image for additional information and regularization purposes. Authors in [80] ex-

tended their approach proposed in [81]. They used a combination of U-net and

Densenet with U-net like architecture containing dense blocks of dilated convolu-

tion. The network of [67] was extended in [82] to create an ensemble of three net-

works that were trained on three image views. Two network cascaded paths were

used in [83], where Coarse Segmentation Network segmented WT, and Fine Seg-

mentation Network segmented the sub-regions of the network. Both the networks

used 3D U-net with four levels of deep architecture.

Authors in [84] used three networks (WNet, TNet, and ENet) to prepare the

cascaded path. The multi-scale prediction of the voxels was averaged for the private

network. These networks trained on three-views of images (axial, coronal, sagittal)

and the result from the averages generated the final segmentation output. In [85],
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a cascaded network was proposed, which initially segmented the whole tumor fol-

lowed by the tumor core, and enhancing tumor segmentation refinement. In [86],

the authors proposed a cascaded U-net with three networks. The network processed

downsampled input, and the generated output was passed to the next network in

the cascaded sequence. Authors in [87] proposed multi-scale mask 3D U-nets with

atrous spatial pyramid pooling layers. WT segmentation generated by the first net-

work was passed to the second for TC generation, which in sequence passed to the

final network to generate ET output.

Authors in [88] used an ensemble of 12 3D networks with patches as input.

In [89], the authors used various 3D networks with a variation in input patches.

Authors of [90] extended their work with instance normalization instead of batch

normalization.

Appendix C, Table C.1 shows the comparison of the FCNN based segmenta-

tion methods. The comparison mainly includes the pre-processing techniques, MRI

modality and augmentation techniques, the type of the input to the network, input

view, network architecture, number of networks used, ensemble approach in case of

more than one network, loss function, post-processing technique, and DSC.

3.4.7 Overall Survival Prediction

In [91], an ensemble of RF and CNN segmented the tumor and random forest regres-

sor (RFR) was used to predict the OS days using 240 features out of 1366 different

features (Kaplan-Meier estimator was used to find relevant and useful features). Au-

thors in [81] modified U-net with a Full Resolution Residual Network (FRRN) and

Residual Unit (RU) units along with weight scaling dropout. The survival prediction

ANN worked with a linear activation function on four selected features.

The variant of U-net was used in [75], which took a 3D input and included a

context module and a localization module in each architecture level. The segmen-

tation result was generated based on element-wise summation of the output from

the decoder layers. Survival prediction was the average of RFR and Multi Layer

Perceptron (MLP). RFR trained on 517 features extracted from three tumor sub-

regions using the radiomics package [92]. The output of RFR and MLP averaged
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the OS prediction. 15 MLPs were designed with three hidden layers, each with 64

neurons.

Authors in [93] implemented 3D U-net with three stages of encoder-decoder

architecture. Regression model based radiomics features selection trained the MLP

for OS prediction. In [94], two 3D U-nets used four-stage encoder-decoder archi-

tecture; the first network segmented the whole tumor, and the second one segmented

the tumor sub-region. In addition to the four conventional modalities, they used an

additional image as an input, which the T1c-T1 subtracted. This image provided

additional information for the tumor core region. They used only the age feature

to predict the OS using linear regressor. The approach presented in [95] used an

FCNN named FCRN-101, which was derived from pre-trained SegNet and U-net

architecture. A three path network combined the result of three views, i.e., axial,

coronal, and sagittal. The OS prediction used SPNet, the fully-connected CNN,

which took four modalities and the network segmentation result as input to predict

the probability of OS prediction.

Authors in [96] used an ensemble of six 3D U-net like networks with varia-

tion in the input size, the number of encoding/decoding blocks, and feature maps

at every layer. The OS prediction used linear regression with ground truth segmen-

tation, OS information, and surface area. Features were input to the network after

z-score normalization. In [97], the authors implemented FCN and generated results

for three axes and used majority voting to generate final segmentation results. For

OS prediction, ten features (focusing on necrosis and active tumor) from the seg-

mentation results were generated, and mean PCA and standard deviation PCA were

used to train the RF on the GTR images.

In [98], an ensemble of three networks (U-net [57], DFKZNet [75], and

CACNN [84]) was used, and majority voting applied for final segmentation. The OS

prediction used RF with 14 radiomics features selected from various modality im-

ages, Laplacian of Gaussian Images, and wavelet decomposed images. Authors in

[99] implemented a 2D U-net architecture with three stages for tumor segmentation

and age, volumetric, and the shape features of the whole tumor were used to predict
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OS. Authors in [100] implemented a 2D U-net of three stages with dense blocks at

every encoder level and the feature set of [99] of a necrosis tumor sub-region for

OS prediction.

3.5 Summary

This chapter gives an overview of various methods to address the segmentation and

OS prediction tasks. The segmentation was initially handled by conventional meth-

ods, which include basic, generative, and discriminative methods. The limitations

of such methods are identifying tissue probability class, manual tissue class selec-

tion, atlas matching, and feature extraction. The DNN methods, with a particular

focus on the CNN/FCNN, are covered to address the limitations as mentioned ear-

lier. These methods are categorized as per the approaches shown in Figure 3.3. The

end-to-end processes use CNN/FCNN for tumor segmentation and conventional

methods like SVM, RF, and linear regression for OS prediction. Out of all tradi-

tional prediction of OS methods, RF gives a promising prediction outcome. The

deep learning methods are not used for OS prediction as the available dataset for it

contains limited samples (236), which are not sufficient to train any deep learning

methods.
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Chapter 4

The Development of New Encoder-Decoder

Architecture

This chapter depicts the development of a new encoder-decoder FCNN architecture

that helps to segment a brain tumor efficiently with less computation complexity.

4.1 Hardware and Software Specifications for Algorithm Devel-

opment

The proposed networks are designed using the following open source python pack-

ages:

• SimpleITK and Nibabel: These packages help read and write the MRI images

in .nii format. SimpleITK is also used for bias field correction.

• Scikit-image: The package helps apply the affine transformation on the image

for pre-processing and connected component analysis for post-processing.

• TensorFlow: This package helps design and train the network as this package

supports library management, has better debugging and scalable functionali-

ties and is designed for pipelining to support various backends like CPU and

GPU.

The networks are trained and tested on the following workstations:

• HP Z240: Intel Xeon Processor E3-1245 v5 3.50GHz, 4 Cores, Quadro

K5200 8GB GDDR5 GPU memory, 256-bit memory interface, 193 GB/s

memory bandwidth.
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• HP Z840: Intel Xeon Processor E5-2643 v4 3.40GHz, 6 Cores, Quadro P5000

16GB GDDR5X GPU memory, 256-bit memory interface, up to 288 GP/s

memory bandwidth.

4.2 Fully Convolutional Neural Network

In healthcare, a medical image is the most reliable treatment plan for acute dis-

eases like cancer, fracture, heart problems, and chest infection. Segmentation helps

identify the diseased area from the images. Though medical images are the largest

source in the field, it is difficult to analyse these images without experts like ra-

diologists. Artificial intelligence-based deep learning algorithms are introduced in

this field for fast, automated, and independent image analysis. Moreover, a Glioma

brain tumor affects a patient’s mortality, which requires robust tumor segmentation

for better OS prediction.

As mentioned in Chapter 3, researchers have attempted the task of brain tumor

segmentation with conventional and deep learning approaches. The CNNs have

proven robust in comparison to the conventional methods.

The important part of CNN architecture is the convolution layer [101], which

helps in sparse interactions, network parameter sharing, and translation invariant

feature representations. This layer generates the set of feature maps resulting from

applying a convolution filter to the given input. The feature maps represent the

features learned during the training phase. The initial layers learn basic features

from the input. Deeper layers successively learn complex features. The design of

CNN requires special attention for the following points:

• The number of convolution filters in a layer and its size: The convolution fil-

ter works as a feature detector and generates the explanatory factors in feature

maps by looking at the input. The number of filters in a layer decides how

many different features must be learned by the layer. Moreover, the kernel’s

size in a filter decides the neighborhood voxels relationship, which is con-

sidered for convolution operation to generate the feature map. The number

of convolution filters and filter size may vary depending on the application,
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problem complexity, and image resolution. Empirically, the more number

of filters means the more the network learns. However, saturation and con-

vergence of the model matter the most. These hyperparameters are specified

before training.

• The initialization of convolution filter parameters: For the imbalanced data

set, the convolution filter initialization plays an essential role in iterative train-

ing convergence. Improper parameter initialization may lead the training con-

verge in platue or saddle point and does not converge to a global optimum.

• The memory requirement for CNN training depends on three factors:

1. The intermediate volume sizes: These numbers represent the amount of

memory used for activations at each layer and its gradient, which are

needed for backpropagation.

2. The parameter sizes: These are the numbers that hold the network pa-

rameters and their gradients for backpropagation. Additional parame-

ters are required for advanced parameter optimizations like momentum,

Adagrad, or RMSProp.

3. The miscellaneous memory: It is required to store the image data

batches and their augmented versions, if any.

The CNN and FCNN methods of Chapter 3 are computationally expensive and

memory inefficient. The proposed architectures are made simple, computationally

efficient, and require less memory. Besides, the focus is to address the accurate OS

prediction requires the features extracted from the network segmented results.

4.3 2D Encoder-Decoder FCNN

Figure 4.1 shows the proposed FCNN with eleven convolution layers. The arrange-

ment of layers makes the two layers encoder-decoder architecture where the com-

bination of two successive convolution layers creates two encoder, one bottleneck,

and two decoder modules, respectively. The network design considers the following

points:
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Figure 4.1: The proposed 2D encoder-decoder FCNN.

• Number of convolution filters: The heterogeneous tumor appearance de-

mands learning of various features from the input image. This requirement

is addressed by the number of convolution filters at each layer. The first en-

coder module uses 64 filters at each convolution layer. This filter count is

successively doubled until the bottleneck layer, which results in 64, 128, and

256 filters in the first encoder module, second encoder module, and bottle-

neck layer. At the decoder module, the filters are halved at each layer, which

results in 128 and 64 filters at the first and second decoder modules.

• Kernel size: The kernel size at each convolution layer is 3x3, which is the

empirically chosen smallest size to reduce computational complexity. If the

kernel size is 5x5, then a single convolution operation results in 25 multiplica-

tion operations, whereas 3x3 results in 9 such operations reduce computations

by approximately 2.8 times. Further, two consecutive 3x3 convolution opera-

tion results in 18 operations give a wider receptive field the same as 5x5 and

reduce the computation by 1.4 times. Also, it reduces the noise, if any, and

preserves the sharpness of the median filter. The last convolution layer uses

a 1x1 kernel size. This layer applies channel-wise pooling for output map

generation.

• Max pooling: It follows each encoder module. It keeps the most prominent

feature from the previous feature map, summarizing the features learned by
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convolution layers. It also reduces the number of other passed parameters to

the successive layers, reducing the network computation cost.

• Upconvolution: It upscales the summarized information received from previ-

ous layers. The upscaling is performed to match the input image size required

to establish a voxel-wise relationship between network input and output.

• Long skip connections [102]: These connections are between the peer mod-

ules of encoder-decoder path, which work as a highway to pass low-level fea-

tures from the encoder module to the decoder module. Such connections have

advantages like 1) it helps model convergence by resolving the vanishing gra-

dient problem, 2) they help improve information reconstruction by providing

the low-level information learned at the encoder modules.

The ReLU activation follows all the convolution layers. The network uses the

dice loss function for network parameter learning. Every two filter maps have the

dimension of 240x240, 120x120, 60x60, 120x120, and 240x240, respectively, fol-

lowed by the output probability map. The segmentation map is learned using the

one-vs-all approach, which leads to separate training for individual subregions. The

network input is made up of 2D T1, T1c, T2, and FLAIR modality slices. The scarcity

of the tumor images for networking learning is handled with the data augmentation

techniques. It generates images from the available data set images to help geometric

transformation and filtering techniques [103]. The geometric transformation tech-

niques preserve the labels post-transformation. These techniques include rotation,

translation, flipping. The other transformation includes the elastic transformation,

which is the filter-based transformation. The disadvantage of this augmentation is

that it does not preserve the label post-transformation.

The small amount of labelled data including augmentated one for substruc-

tures specifically for enhancing and necrosis substructures causes network training

failure. The solution gets stuck in the local minima, which necessitates network

training to be re-initiated. Inductive transfer learning [104] for parameter initializa-

tion resolves the above issue. Here the substructure network initializes with whole

tumor weights instead of random initialization. It serves two purposes: 1) It handles
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Table 4.1: Test data set evaluation for DSC, sensitivity and positive predictive value (PPV),
where A: model without weight initialization, B: model with weight initialization.

DSC % Sensitivity % PPV %

Whole Tumor 78 76 91

A B A B A B

Necrosis 58 65 56 67 69 70

Enhancing 58 60 56 54 69 74

Edema 63 71 56 66 79 83

the dearth of the labelled data, and 2) It also provides substructure area localization.

The functioning of network training has been greatly improved because of weight

transfer. The network training uses random parameter initialization from normal

distribution for whole tumor segmentation. The procured weights that are obtained,

are in turn, conveyed to the substructure networks for the initialization of the pa-

rameters. The network undergoes training for 50 epochs during each iteration. The

DSC comparison is as shown in Table 4.1.

Figure 4.2 depicts sample 2D slice results for the segmentation of the entire

tumor along with three substructures (including inductive transfer learning and also

with no inductive transfer learning). A network which is trained without parameter

initialization results in more false outputs as compared to a network which is trained

with whole tumor parameter initialization. Many such false results are marked with

arrows in the Figure 4.2.

The advantages of the proposed 2D FCNN network are:

1. The translation invariance capabilities of the model can locate the tumor any-

where within the brain.

2. fewer network parameters speed up the segmentation and it takes less than

50s to generate the result.

3. subcomponent network initialization learns the parameters in a better way.

Limitations of the proposed 2D FCNN network are:

1. It does not learn the diversified features.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure 4.2: Segmentation output: (A) T2 image slice, (where, Edema is in yellow, Enhanc-
ing core is in blue, Necrotic/Non-enhancing core is in green) (B) WT ground truth, (C) WT
segmentation, (D) Edema ground truth, (E) Edema segmentation without weight initializa-
tion, (F) Edema segmentation with weight initialization, (G) Enhancing tumor ground truth,
(H) Enhancing tumor segmentation without weight transfer, (I) Enhancing tumor segmen-
tation with weight transfer, (J) Necrotic ground truth, (K) Necrotic segmentation without
weight transfer, (L) Necrotic segmentation with weight transfer.
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2. A smaller receptive field does not learn global features accurately.

3. In extreme cases, the network may get stuck into local minima or platue and

the gradient does not flow back to the initial layers resulting in no parameter

learning.

4. The 2D training does not allow for learning the 3D relationship between the

voxels across slices.

5. Four networks are trained for the whole tumor and the tumor substructures,

which takes around eight days for the training.

A dense FCNN overcomes some of these limitations of the proposed 2D FCNN.

The following section covers a dense FCNN.

4.4 2D Encoder-Decoder Dense FCNN

The proposed FCNN makes use of a two-layer architecture of 4.3, where the en-

coder module is replaced with the dense module. The network architecture is as

shown in Figure 4.3.

Figure 4.3: The proposed 2D encoder-decoder dense FCNN.

The dense module is made up of successive convolution layers with dense

connections in between. The dense connections create the short skip connections

between the layers of a module. These short skip connections between convolution

layers have multiple advantages:
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• They allow extra inputs to construct collective knowledge of the earlier layers

and pass on their feature-maps to all the successive layers.

• They allow gradient flow to the preceding layers for in-depth supervision by

the classification layer.

• They provide heterogeneous features to the subsequent layers, which results

in a better ability for identifying patterns.

ReLU activation follows each convolution layer. The parameter initialization

and data augmentation techniques of section 4.3 to initialize the substructure net-

work training are used for this network. The first phase completes the whole tumor

training, followed by substructure training with whole tumor training weights. The

data set is divided into 85% and 15% for training and validation. Input to the net-

work is 2D slices of T1, T2, T1c, and FLAIR modalities of 240x240 size each. The

blank slices of the images are removed to speed up the process. Further, the focal

loss function for network training handles the misclassification error as shown in

Equation 4.1 below:

LossFL(pt) =−αt(1− pt)
γ log(pt)

pt =

pt i f yi = 1

1− pt i f yi =−1

(4.1)

where y∈ [1,−1] is the ground-truth label, and pt ∈ [0,1] is the predicted prob-

ability of the class with label y = 1. The weighting parameter α deals with an im-

balanced data set. The focusing parameter γ makes an adjustment in the rate at

which easy examples are down-weighted very easily. Setting γ > 0 can result in a

reduction in a relative loss for examples that are well classified. It moves the focus

on examples that are challenging and misclassified. The focal loss is the original

cross-entropy loss when γ = 0.

The successful segmentation of a network for a sample slice is shown in Figure

4.4. In some cases, the network is unable to distinguish between the substructures

which is shown in Figure 4.5. In some tumor cases, the enhancing tumor surrounds

the necrosis, whereas in other cases it penetrates the necrosis. These variations are
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not learned by the network which degrades the performance on ET. Table 4.2 shows

the achieved DSC and Hausdorff95, and Table 4.3 shows sensitivity and specificity

of the network on the training set. The values in the tables show that the network

performs accurately on the given data. Various current techniques have been com-

pared and depicted in Table 4.4. The suggested network performance compares well

for ET and WT and outperforms for TC for both DSC and Hausdorff95 measures.

(A) (B)

(C)

Figure 4.4: Correct segmentation result (A) FLAIR slice, brown-necrosis, gray-enhancing
tumor, orange-edema (B) Ground truth slice (C) Segmentation slice.

Table 4.2: BraTS 2019 training set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC
Mean 79.32 91.58 89.86 04.07 04.23 03.75
StdDev 24.58 08.57 12.32 11.67 06.39 07.79
Median 87.36 94.53 93.31 01.41 02.24 02.00
25quantile 81.90 91.07 89.28 01.00 01.41 01.41
75quantile 91.83 95.87 95.55 01.73 04.24 03.00
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(A) (B)

(C)

Figure 4.5: Incorrect segmentation result (A) FLAIR slice, orange-necrosis, gray-edema
(B) Ground truth slice (C) Segmentation slice.

Table 4.3: BraTS 2019 training set evaluation for sensitivity and specificity.

Sensitivity% Specificity%

ET WT TC ET WT TC
Mean 79.10 89.69 88.04 99.90 99.65 99.81
StdDev 20.59 12.10 13.82 00.22 00.33 00.36
Median 84.74 93.92 92.32 99.95 99.74 99.91
25quantile 77.24 89.45 87.76 99.87 99.55 99.83
75quantile 90.73 95.98 95.01 99.98 99.86 99.97

Table 4.4: Comparison of DSC and HD95 with state-of-the-art methods.

References
DSC% HD95

ET WT TC ET WT TC
[89] 79.70 90.00 87.30 03.64 04.43 04.16
[90] 77.12 90.53 84.47 03.71 07.09 05.05
[105] 75.61 92.18 88.88 04.01 03.70 03.92
[106] 78.62 90.31 82.90 03.37 05.04 05.56
[107] 79.17 90.94 83.22 04.02 03.80 05.65
[108] 82.62 91.65 88.80 03.07 04.01 03.67
Proposed 79.30 91.60 89.60 03.90 03.76 03.56
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On the training set, the network functions well, but on the validation and test

sets the outcome does not compare well. The observation for validation set is shown

in Table 4.5 and Table 4.6 whereas for test set is shown in 4.7.

Table 4.5: BraTS 2019 validation set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC

Mean 59.17 72.52 65.09 09.62 12.80 15.37
StdDev 34.14 23.64 30.36 15.83 16.86 19.91
Median 76.28 83.63 78.43 03.61 07.48 07.81
25quantile 29.44 64.92 51.45 01.93 04.58 04.00
75quantile 85.44 88.60 88.18 07.98 12.81 16.16

Table 4.6: BraTS 2019 validation set evaluation for sensitivity and specificity.

Sensitivity% Specificity%

ET WT TC ET WT TC

Mean 58.83 67.38 63.67 99.80 98.51 98.79
StdDev 33.09 24.97 31.05 00.78 05.90 05.31
Median 71.35 75.16 76.48 99.96 99.70 99.90
25quantile 33.46 53.62 41.13 99.84 99.31 99.61
75quantile 85.64 87.82 88.12 99.99 99.94 99.98

Table 4.7: BraTS 2019 test set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC

Mean 63.75 71.83 66.44 055.11 41.30 057.12
StdDev 32.82 29.24 35.98 125.68 99.06 122.21
Median 78.39 84.41 85.71 002.24 06.40 005.51
25quantile 55.06 67.08 50.95 001.41 03.81 002.45
75quantile 86.39 90.50 92.47 010.48 13.24 018.45

Minor modifications are applied to the architecture, input as well as loss func-

tions to observe the performance on the training and validation sets. These changes

along with DSC are as shown in the Table 4.8. The variations in the network in-

clude:
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Table 4.8: Model variations of 2D encoder-decoder dense FCNN.

Model Architectural
change

Input
modali-
ties

# Feature
maps

Input size Loss
function

Training
set
DSC(%)

Validation
set
DSC(%)

1 Original T1,
T1c, T2,
FLAIR

32, 64,
128, 64,
32

240 x 240 dice WT:90
TC:86
ET:75

WT:72
TC:63
ET:55

2 Original T1,
T1c, T2,
FLAIR

32, 64,
128, 64,
32

156 x 200 dice WT:90
TC:86
ET:75

WT:72
TC:63
ET:55

3 Dense mod-
ule + Convo-
lution layer

T1,
T1c, T2,
FLAIR

32, 64,
128, 64,
32

156 x 200 dice WT:89
TC:84
ET:71

WT:71
TC:61
ET:56

4 Dense mod-
ule + Convo-
lution layer

T1,
T1c, T2,
FLAIR

32, 64,
128, 64,
32

156 x 200 focal WT:93
TC:90
ET:83

WT:75
TC:65
ET:60

5 Dense mod-
ule + Convo-
lution layer

T1c, T2,
FLAIR

32, 64,
128, 64,
32

156 x 200 focal WT:87
TC:81
ET:67

WT:71
TC:58
ET:51

6 Dense mod-
ule + Convo-
lution layer

T1c, T2,
FLAIR

32, 64,
128, 64,
32

156 x 200 focal WT:92
TC:89
ET:79

WT:76
TC:66
ET:60

• The architectural changes: the number of feature maps at each layer and in-

clusion of convolution layer before the dense module at the encoder side.

• The input changes: number of input modalities and the size of the 2D slice

extracted from the input images as the bounding box. The bounding box is

identified to remove the blank area in the image.

• Loss functions: The network is trained using either dice loss or focal loss.

The DSC comparison of both, the training as well as validation sets for these

variations is shown in Figure 4.6. The segmentation results show that the method

overfits the training data and does not generate good results for the unknown vali-

dation set. The performance degradation of the proposed architecture is due to the

following model limitations:

• The limited network depth restricts the abstract level feature learning, which

results in improper feature reconstruction at the decoder modules.

• The augmentation is applied to an entire image, which does not solve the

imbalance between tumorous and non-tumorous slices.

55



4.4. 2D Encoder-Decoder Dense FCNN

(A) (B)

(C)

Figure 4.6: DSC comparison for training and validation set (A) whole tumor (B) tumor
core (C) enhancing tumor.

• The dense encoding module learns various features, which are not correctly

reconstructed at the decoding module as these modules are comparatively

more straightforward than the encoding module. This leads to the network

overfitting issue.

• It cannot learn the voxel relationship in three-dimension, which results in

improper segmentation for unknown images.

• Four networks are trained for a whole tumor and the tumor substructures,

which takes around eight days for the training.

The proposed 3D FCNN model in Section 4.5 overcomes these limitations.
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4.5 3D Encoder-Decoder Dense FCNN

The 3D FCNN gathers a spatial relationship between the voxels. It is based on the

network proposed in Section 4.4 with a 3D variation, as shown in Figure 4.7. The

architectural changes to the network are as follows:

• The network depth is increased by one layer, which helps the network learn

abstract features.

• The decoding modules are replaced with the dense module. This helps the

network learn proper feature reconstruction at the decoding modules.

• The batch normalization is applied after the convolution to reduce the internal

covariance shift [109], which introduces strong regularization in the network.

Parametric ReLU activation follows batch normalization, which accelerates

network training.

• Input to the network is equiprobable 3D patches from a background (nontu-

morous region) and foreground (tumorous region). This addresses the imbal-

ance class issue.

The encoder dense modules generate 26, 27, 28 and 29 feature maps, respec-

tively. The decoder dense modules generate 28, 27 and 26 feature maps followed

by 1x1x1 convolution as the last operation to generate a one probability map which

includes labels for multi-class classification.

An equal number of patches from tumor and non-tumor brain areas are ex-

tracted from the images to guarantee that the network does not overlearn the back-

ground voxels. Further, the network trains with a combination of the dice function

and the focal loss function. The network takes training patches from all the four

modalities, and all the training set images are taken as input. Four hundred training

patches are extracted from each training image. The network trains for 610 epochs

with batch size 1. A sliding window approach generates the output for each subject.

The stride size is reduced to half of the training window size to overcome the un-

stable prediction issue of the boundary voxels. The output of the original patch and

flipped patch is predicted and averaged to generate the final output.
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Figure 4.7: The proposed 3D encoder-decoder dense FCNN.

4.5.1 Pre-processing

The pre-processing enhances network training and performance. All four modality

images are bias field corrected followed by denoising and z-score normalization.

The pre-processing is applied on individual MR sequence. Data augmentation hap-

pens by flipping the patches around the vertical axis. Figure 4.8 shows the bias field

corrected and denoised images. The z-score normalization is applied at the time of

training.

4.5.2 Post-processing

Post-processing includes two methods: 1) The connected component analysis re-

moves the tumor with volume less than thousand voxels, 2) an enhancing tumor is

formed surrounding the necrosis and its size cannot be very small in HGG. Such

small sized enhancing tumor is converted to necrosis. The empirically chosen

threshold for the conversion is 300.
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(A) (B)

(C)

Figure 4.8: Image pre-processing (A) FLAIR slice (B) Bias field correction (C) Bias field
correction with denoising.

4.5.3 Results

Various evaluation metrics; DSC, Hausdorff95, Sensitivity and Specificity for the

training set are in Table 4.9 and Table 4.10. The results for validation set are given

in Table 4.11 and Table 4.12. The comparable performance of network is also ob-

served for test set, which is as shown in Table 4.13. Figure 4.9 depicts the box plot

of the evaluation metrics, where the red marked crosses show the below average

segmentation. The failure of the network is observed for: 1) small size of a tumor,

2) small size of the necrosis, and 3) absence or small size of an enhancing tumor.

Figure 4.10 shows successful segmentation of the tumor. False positive seg-

mentation voxels are removed in post-processing. The network fails to segment

the tumor for some HGG images and many LGG images. One such segmentation

failure is shown in Figure 4.11.

The segmentation improvement of 3D FCNN over 2D FCNN is as shown in
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Table 4.9: BraTS 2020 training set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC

Mean 78.22 88.15 83.22 29.27 06.23 06.99
StdDev 24.68 11.66 19.10 94.96 08.13 20.51
Median 87.18 91.97 90.97 01.41 03.46 03.32
25quantile 77.89 86.23 80.50 01.00 02.24 02.00
75quantile 91.19 94.28 94.38 03.16 06.94 07.87

Table 4.10: BraTS 2020 training set evaluation for sensitivity and specificity.

Sensitivity% Specificity%

ET WT TC ET WT TC

Mean 78.29 84.44 80.19 99.98 99.94 99.97
StdDev 25.20 15.80 20.91 00.03 00.09 00.06
Median 86.36 89.55 88.25 99.97 99.97 99.99
25quantile 76.20 79.53 76.33 99.97 99.93 99.98
75quantile 92.45 94.50 93.07 99.99 99.98 99.99

Table 4.11: BraTS 2020 validation set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC

Mean 76.29 87.28 75.28 27.70 07.04 10.87
StdDev 25.92 09.83 26.28 90.92 09.35 33.82
Median 85.21 90.77 87.79 02.24 03.74 04.69
25quantile 75.08 85.64 71.06 01.41 02.45 02.24
75quantile 89.89 93.51 92.60 04.24 06.48 11.05

Table 4.12: BraTS 2020 validation set evaluation for sensitivity and specificity.

Sensitivity% Specificity%

ET WT TC ET WT TC

Mean 75.90 84.69 71.34 99.97 99.91 99.97
StdDev 27.27 14.93 28.83 00.03 00.13 00.07
Median 85.25 89.66 84.13 99.99 99.96 99.97
25quantile 71.60 80.93 60.66 99.97 99.88 99.97
75quantile 93.25 95.45 92.17 99.99 99.98 99.99
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Table 4.13: BraTS 2020 test set evaluation for DSC and HD95.

DSC% HD95

ET WT TC ET WT TC

Mean 77.92 87.49 81.49 27.08 08.30 21.61
StdDev 23.19 11.24 25.02 92.55 30.01 74.65
Median 84.67 91.01 91.26 01.73 03.46 03.16
25quantile 76.01 85.49 83.36 01.10 02.00 01.80
75quantile 90.83 93.50 94.82 02.73 06.16 07.86

(A) (B)

(C) (D)

Figure 4.9: The box plot (A) DSC (B) Hausdorff95 (C) Sensitivity (D) Specificity.
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(A) (B)

(C) (D)

Figure 4.10: Correct segmentation results of the network, brown-necrosis, gray-enhancing
tumor, orange-edema (A) FLAIR slice (B) Ground truth (C) Segmentation without post-
processing (D) Segmentation after post-processing.

Figures 4.12 to 4.15. Both the networks segment the tumor irrespective of location,

but the voxel relationship is learned better by 3D FCNN than 2D FCNN. The 3D

FCNN improves the result in the absence of enhancing tumor, which is generally

the case in LGG images, as shown in Figure 4.15.

The proposed methods are compared with other advanced ensemble techniques

and the comparison is listed in Table 4.14. All the methods use an ensemble of

FCNN which works in parallel, cascade, parallel of cascades or cascades of par-

allel. Although the ensemble approaches provide robust segmentation, they have

certain limitations: (1) ensemble methods are computationally expensive. Hence,

learning time and prediction time are added to the problem along with memory con-

straints, (2) using ensemble methods reduces model interpretability due to increased

complexity and makes it very difficult to understand. The proposed network aims

performance similar to ensemble approaches and gives consistent output with less

computational complexity.
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(A) (B)

(C) (D)

Figure 4.11: Incorrect segmentation results of the network, brown-necrosis, gray-
enhancing tumor, orange-edema (A) FLAIR slice (B) Ground truth (C) Segmentation with-
out post-processing (D) Segmentation after post-processing.

(A) (B)

(C) (D)

Figure 4.12: Brown-necrosis, gray-enhancing tumor, orange-edema (A) FLAIR slice (B)
Ground truth (C) 2D FCNN segmentation (D) 3D FCNN segmentation.
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(A) (B)

(C) (D)

Figure 4.13: Brown-necrosis, gray-enhancing tumor, orange-edema (A) FLAIR slice (B)
Ground truth (C) 2D FCNN segmentation (D) 3D FCNN segmentation.

(A) (B)

(C) (D)

Figure 4.14: Brown-necrosis, gray-enhancing tumor, orange-edema (A) FLAIR slice (B)
Ground truth (C) 2D FCNN segmentation (D) 3D FCNN segmentation.
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(A) (B)

(C) (D)

Figure 4.15: Orange-necrosis, gray-enhancing tumor (A) FLAIR slice (B) Ground truth
(C) 2D FCNN segmentation (D) 3D FCNN segmentation.

Table 4.14: DSC comparision with state-of-the-art ensemble methods.

Reference Input # FCNN # Conv layers
DSC%

ET WT TC

[110] 3D image 3 32 78 78 79

[111] 2D image and
3D patches

4 72 67 87 76

[112] 2D image 15 22 71 85 71

[113] 3D patches 2 18 59 80 69

[114] 3D patches 4 14 67 87 73

[115] 3D patches 2 22 62 85 76

[116] 2D images 4 72 68 84 73

Proposed
[100]

3D patches 1 21 76 87 75

4.6 Summary

The chapter shows three FCNN architectures to address tumor segmentation. The

2D encoder-decoder FCNN is a two-layer architecture that trains on 2D slices of
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BraTS 2018 training dataset. The parameter initialization technique improves the

segmentation of the tumor substructures. The 2D encoder-decoder dense FCNN

is also a two-layer architecture where encoder modules use dense connections be-

tween the convolution layers. The network trains on 2D slices of the BraTS 2019

training dataset. The network further improves the substructure segmentation with

a focal loss function. The 3D encoder-decoder dense FCNN is a three-layer archi-

tecture that trains on equiprobable 3D patches of the BraTS 2020 training dataset.

Further, the network introduces a combination of dice and focal loss function. The

2D FCNN and 2D dense FCNN use z-score normalization pre-processing, whereas

3D FCNN uses bias field correction, denoising, and z-score normalization pre-

processing techniques. The 3D FCNN adds the connected component analysis

post-processing to remove spurious segmentation and conversion of enhancing sub-

structure to necrosis if it is below three hundred.
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Chapter 5

Overall Survival Prediction

Overall Survival prediction gives the number of days the patient will survive after

the treatment is given in the existing state of the tumor. The automated OS pre-

diction includes tumorous feature processing. This feature set may include age,

tumor status, gene expression, and other available clinical data. The availability of

all such information is a bit difficult in the healthcare domain. The BraTS training

dataset provides age, resection status and survival days to help OS prediction. As

per Section 2.2.2, the patient’s survival is divided in three classes namely, short-

term survivors, mid-term survivors and long-term survivors. Figure 5.1 shows the

spread of the HGG patients’ survival days with age for the BraTS 2020 dataset.

Although the average age of the short-term survivors, mid-term survivors and

long-term survivors is 66, 59 and 57 respectively, there is an overlap of age between

each class. The need for proper feature selection from the MRI images plays an

important role in training the model for accurate prediction. The chapter depicts

features extracted from the MRI images and focuses on the feature selection for OS

prediction task.

5.1 Radiomics Features

The tumor-related features from various MRI modality images include radiomics

features [92]. The radiomics method extracts many features from radiographic

images; these features uncover disease characteristics that are not visible to the

eye. These features are calculated from the radiographic image for the label



5.1. Radiomics Features

Figure 5.1: Patients’ OS days.

mask(segmentation mask) applied to it. The most widely used radiomics features

are:

• First order features (19): describe the distribution of voxel intensities within

the image region.

• Shape features (16): describe the three-dimensional shape and size of the

ROI.

• Gray Level Co-occurrence Matrix (GLCM) (26).

• Gray Level Size Zone Matrix (GLSZM) (16).

• Gray Level Run Length Matrix (GLRLM) (16).

• Neighbouring Gray Tone Difference Matrix (NGTDM) (5).

• Gray Level Dependence Matrix (GLDM) (15).

All radiomics features can be calculated either from the original image or the

derived image (obtained after applying filters). The shape features are not dependent

on gray value, and are extracted from the labelled mask. These features are common
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across all the modality images. Other statistics related to the tumor are: number of

tumorous voxels, number of necrosis voxels, number of edema voxels, number of

enhancing tumor voxels, the spread of a tumor, amount of tumor. After extracting

such features from the image, it is highly desirable to select an appropriate set of

features for accurate OS prediction.

5.2 Random Forest Classifier

Authors in [117] tested 179 classifiers on 121 different data sets and identified that

random forest is the best classifier amongst the other classifiers. The same finding

is supported by OS prediction accuracy as shown in Appendix D, Table D.1, where

various classifiers are compared based on number of features on the BraTS data

sets. Section 5.1 describes various features which can be extracted either from the

tumor label images or from the MRI images. According to [118], the radiomics

features are multicollinear which introduces redundancy. This requires proper se-

lection of discriminative features to train RFC for accurate OS prediction. Widely

used features for OS prediction are:

• Age (Available with dataset)

• Volumetric (statistical features extracted from the tumor)

• Shape Features (gray level independent features): According to [119], the

shape features help in the accurate study of Glioma tumors with the morpho-

logical features to study shape irregularities.

• Other Radiomics features (extracted based on the tumor mask)

A RFC of 20 decision trees with information gain as the splitting criteria is used

with different combination of above mentioned features to classify the OS predic-

tion in three different classes, i.e., short-term survivors(0), mid-term survivors(1),

and long-term survivors(2). The training and test sets contain 130 and 33 patients,

respectively, from the BraTS 2018 dataset. RFC is trained on the whole tumor fea-

tures extracted from the network’s segmentation results explained in section 4.3.

Out of various combinations of the features which have been experimented,

the feature combination of age, shape, and volumetric features is found to be the
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Table 5.1: RFC accuracy for various feature sets.

Set
No.

Features Training
set Ac-
curacy
(%)

Test set
Accu-
racy(%)

1 Volumetric 89.2 31.3

2 Shape 86.9 37.5

3 Radiomics 90.0 25.0

4 Age and Volumetric 89.2 34.4

5 Age and Shape 85.4 43.8

6 Age and Radiomics 87.7 31.2

7 Volumetric, Shape and Radiomics 86.9 40.6

8 Age, Shape, Volumetric and Radiomics 86.9 37.5

9 Age, Volumetric and Shape 87.7 59.4

best possible discriminative feature set which achieves an accuracy of 59.4% on the

test set using RFC. The accuracy of the RFC for different feature sets is as shown

in Table 5.1.

In addition to the accuracy, the Area Under the receiver operating characteristic

Curve (AUC) is another metric to measure the performance of the classifier. The

AUC measures the prediction’s rank and not its absolute value. It also measures

the quality of the prediction irrespective of the classification threshold. The AUC

for the training set is approximately equal for all sets, as shown in Figure 5.2. This

shows that all feature sets perform equally well. Figure 5.3 shows the AUC for

the test set which clearly indicates the better performance of the RFC on the Age,

Volumetric and Shape features.

5.3 Random Forest Regressor

The BraTS challenge requires the submission of exact number of OS days, which

are further classified in the short-term, mid-term and long-term survivors by the

online tool 1. Hence, Random Forest Regressor (RFR) is used instead of RFC to

1https://ipp.cbica.upenn.edu/
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Figure 5.2: Training AUC for various feature sets.

Figure 5.3: Validation AUC for various feature sets.
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Table 5.2: OS accuracy for training, validation and test datasets.

Dataset Accuracy(%) MeanSE MedianSE StdSE SpearmanR

Training 56.4 073144.54 022891.69 0136542.53 0.60

Validation 58.6 105061.87 016460.89 0188752.44 0.40

Test 57.9 374998.78 046483.36 1160428.92 0.43

generate prediction of OS days. Moreover, the feature are extracted from necrosis

tumor substructure instead of whole tumor as:

• the necrotic tumor substructure can be easily resected as this is the collection

of dead brain tissues. However, the enhancing and edema substructures do

not necessarily show the operable tumor tissues.

• the tumor diagnosis and prognosis depend on the necrotic substructure [120].

• The RFR training includes images with both GTR and STR, which again

depends on the necrosis.

The features which are mentioned in 5.2 are extracted from necrotic substruc-

ture of ground truth segmentation to train RFR. The OS prediction for the validation

set considers the trained RFR.

5.3.1 OS Prediction for BraTS 2019

RFR training uses features extracted from 213 ground truth segmentation images.

This trained RFR uses the features of the network segmented images for OS pre-

diction. The feature extractor marks all the features as zero except age in the case

of absence of necrotic core within the image. Table 5.2 depicts the OS accuracy for

the training set as well as the validation set of those images whose resection status

is GTR. The accuracy for all the datasets is consistent but the mean squared error

(MSE) increases. This is due to the error in the predicted days and actual days.

Table 5.3 shows a comparison between the proposed method with the other

existing state-of-the-art techniques on the BraTS 2019 validation set. This method

outperforms other methods for accuracy and median squared error (medianSE).
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Table 5.3: OS comparison with state-of-the-art methods on the BraTS 2019 validation set.

Model Accuracy (%) MeanSE medianSE stdSE SpearmanR

[106] 48.3 088872.50 034369.32 121078.39 0.33

[107] 31.0 107639.33 077906.27 109586.73 0.20

[108] 44.8 100303.72 049284.00 134504.19 0.25

Proposed 58.6 105061.87 016460.89 188752.44 0.40

Table 5.4: OS accuracy for BraTS 2020 training, validation and test datasets.

Dataset Accuracy (%) MeanSE MedianSE StdSE SpearmanR

Training 56.8 083165.96 021481.53 0181697.87 0.60
Validation 51.7 116083.48 043974.09 0168176.16 0.22

Test 47.7 382492.36 046612.81 1081670.06 0.33

5.3.2 OS Prediction for BraTS 2020

RFR training uses features extracted from 237 ground truth segmentation images.

This trained RFR uses the features of the network segmented images for OS pre-

diction. The feature extractor marks all the features as zero except age in the case

of absence of necrotic core within the image. Table 5.4 shows the OS accuracy for

the training as well as validation datasets of those images whose resection status is

GTR. RFR performs better for all the measures on the training set but gives a poor

result on the validation set. This is due to the high error in the prediction of the OS

days for the long survivors as shown in Figure 5.4.

Table 5.5 lists a comparison between the proposed classifier and other state-of-

the-art techniques on the leaderboard2 of BraTS 2020. The table includes the results

from the BraTS 2020 leaderboard. The methodology for the OS prediction of the

mentioned methods is unknown as the leaderboard does not disclose it. The method

performance for accuracy, MSE, MedianSE and SpearmanR is better compared to

the first ranked method ‘redneucon’.

2https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.html
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Figure 5.4: Visualization of actual and predicted survival days.

Table 5.5: OS accuracy comparison with state-of-the-art methods on the leaderboard of
BraTS 2020 for validation set.

Team Name Accuracy (%) MeanSE medianSE stdSE SpearmanR

SCAN 41.4 098704.66 036100.00 152175.57 0.25

redneucon 51.7 122515.76 070305.26 157674.00 0.13

VLB 37.9 093859.54 067348.26 102092.41 0.28

COMSATS-MIDL 48.3 105079.42 037004.93 146375.99 0.13

Proposed 51.7 116083.48 403974.09 168176.16 0.22
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5.4. Summary

5.4 Summary

The chapter focuses on discriminative feature selection from age, statistical, shape,

and other radiomic features. The feature selection is made using RFC on BraTS

2018 dataset. RFC is trained on the components extracted for the entire tumor

using the network segmentation mask. The features which give the highest accuracy

with better ROC are age, statistical, and shape features. The same feature set is

used to train RFR for BraTS 2019 and 2020 datasets. As the necrosis is the core

substructure of the tumor, the prognosis and other treatment planning depend on the

characteristics of this substructure; the RFR is trained on the features selected from

the necrosis label of ground truth. In the absence of necrosis, the RFR predicts the

OS days with age and marks remaining features to be zero.
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Chapter 6

Conclusion and Open Research Challenges

The overall focus of the research was to develop a robust brain tumor segmentation

model to address accurate OS prediction.

6.1 Conclusion

The contribution of the work is divided into three parts:

1. Design a 2D encoder-decoder FCNN with better parameter initialization to

improve the learning of substructures with proper feature selection for OS

prediction.

2. 2D encoder-decoder FCNN with dense connection, improve training for false

segmentation results, and handle the class imbalance problem along with OS

prediction.

3. 3D encoder-decoder FCNN with dense connection and a proper combination

of loss functions to handle the class imbalance issue. This part also includes

OS prediction.

The encoder-decoder FCNN proves to perform better where long skip con-

nections between peer layers help in proper feature reconstruction on the decoder

side. The first 2D encoder-decoder FCNN trains on the whole tumor; later, the

subcomponent network training is initialized with the whole tumor network param-

eters. This parameter initialization has significantly improved the subcomponent

network learning for BraTS 2018 dataset with 285 training images. The second 2D

encoder-decoder dense FCNN has incorporated the dense connections to learn the
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diversified features from all the preceding layers. Also, the focal loss function of

the network training has proved to improve the segmentation results for the BraTS

2019 dataset with 335 training images. Both these networks work on 2D input, and

as a result, these networks give quite a poor result for validation sets, which shows

that the networks cannot learn the 3D relationship between the voxels. This issue

is addressed by a 3D encoder-decoder dense FCNN with an extension to the 2D

encoder-decoder dense FCNN. The network has densely connected modules at all

the layers with a combined loss function to penalise wrongly classified voxels even

within a tiny tumor region in the image. The 3D encoder-decoder dense FCNN

segments the images of the BraTS 2020 dataset with 369 training images and 125

validation images with approximately the same evaluations for both the sets.

A variety of tumor radiomics features were extracted from the MRI images

for OS prediction. The combination of age, volumetric, and shape features has

proven to be the most appropriate feature set to train the RFC and RFR for better

OS prediction. The features are extracted for the whole tumor to train the RFC for

BraTS 2018 dataset. Training and validation sets are considered from the training

set. The features are extracted for the necrosis of ground truth to train the RFR for

BraTS 2019 and 2020 datasets. The accuracy of the three datasets is as shown in

Table 6.1.

Table 6.1: OS accuracy on BraTS datasets.

# Images Accuracy (%)

Dataset Training set Validation set Training set Validation set

BraTS 2018 130 30 87.7 59.4

BraTS 2019 213 29 56.4 58.6

BraTS 2020 237 29 56.8 51.7

6.2 Open Research Challenges

The direction of the future research can be two ways: dataset based and model-

based.
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Dataset: The association of demographic and geographic information with the

dataset improves the segmentation as well as OS prediction as tumor occurrence

mainly depends on it; e.g., a malignant glioma tumor is more common in whites

and less common in African Americans [13]. Besides, it is quite common in men

than in women. The inclusion of such information in the dataset can improve the

network result and help in a better prognosis. The availability of post-treatment

information can improve OS accuracy.

Model: Although the deep learning techniques effectively aid human experts

in diagnosing medical images, its black-box nature restricts its clinical use as such

networks lack transparency, understandability, and explainability. These limitations

do not gain the trust of human experts or even patients. Moreover, explainability

study of the network is highly required for domain specific feature selection, which

influences the prognosis and treatment planning decision. The explainability of the

network can be addressed by:

• Saliency methods: These methods can visualize the insides of the network.

They help to identify the weight activation based on the input. E.g., it gives

input voxels for the weight activation of intermediate layers of the network.

Such methods also help to identify a specific set of convolution layers to find

a region of interest.

• The attention mechanism: The neurological disorder relates to the abnormal

functionality of a specific brain region. The networks which can identify such

biomarkers will improve the explainability of the network. Such networks

may work as pre-processing to focus on the brain region to locate the tumor

area; this result can be finetuned further to delineate the entire tumor.

The other limitation of deep networks is their significantly high computational

cost, which limits their deployability. This cost is introduced mainly due to convo-

lution layers of the network, which takes up the resources for inference. The design

optimization of convolution operations and layers can reduce cost of such processes

and make them suitable for real time inference and deployment.
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Publications by Author

Journal

1. Agravat, Rupal R., Raval, Mehul S.: Brain Tumor Segmentation and

Survival Prediction. In: Crimi A., Bakas S. (eds) Brainlesion: Glioma,

Multiple Sclerosis, Stroke, and Traumatic Brain Injuries. BrainLes

2019. Lecture Notes in Computer Science, vol 11992. pp. 338-348.

Springer, Cham (2020).

2. Agravat, Rupal R., Raval, Mehul S.: 3D Semantic Segmentation of

Brain Tumor for Overall Survival Prediction. In: Crimi A., Bakas S.

(eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke, and Traumatic

Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science,

Springer, Cham (2021).

3. Agravat, Rupal R., Raval, Mehul S.: A survey on Automated Glioma

Brain Tumor Segmentation and Overall Patient Survival Prediction. In:

Archives of Computational Methods in Engineering, Springer [Under

review].

Conference

1. Agravat, Rupal R., Raval, Mehul S.: Prediction of overall survival of

brain tumor patients. In: 2019 IEEE Region 10 Conference(TENCON).

pp. 31-35. IEEE (2019).

Book Chapter

1. Agravat, Rupal R., Raval, Mehul S.: Deep learning for automated brain

tumor segmentation in MRI images. In: Soft Computing Based Medical

Image Analysis. pp. 183-201. Elsevier (2018).

Magazine

1. Agravat, Rupal R., Raval, Mehul S.: Brain Tumor Segmentation. In:

CSI Communication, pp. 31-35. (2016)
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Appendix A

List of Abbreviations

• CNS: Central Nervous System

• GM: Gray Matter

• WM: White Matter

• CSF: Cerebrospinal Fluid

• CT: Computed Tomography

• MRI: Medical Resonance Imaging

• NMR: Nuclear Magnetic Resonance

• RF: Radiofrequency

• TE: Echo Time

• TR: Repetition Time

• FLAIR: Fluid-Attenuated Inversion Recovery

• DTI: Diffusion Tensor Imaging

• GPU: Graphical Processing Unit

• SNR: Signal to Noise Ratio

• HGG: High Grade Glioma



• LGG: Low Grade Glioma

• WT: Whole Tumor

• TC: Tumor Core

• ET: Enhancing Tumor

• OS: Overall Survival

• GTR: Gross Total Resection

• STR: Sub Total Resection

• CCA: Connected Component Analysis

• CRF: Conditional Random Field

• DSC: Dice Similarity Coefficient

• FN: False Negative

• FP: False Positive

• TP: True Positive

• TN: True Negative

• HD: Hausdorff Distance

• FCNN: Fully Convolutional Neural Network

• LoG: Laplacian of Gaussian

• ATMSVC: Adaptive Template Moderated Spatially Varying statistical Clas-

sification

• EM: Expectation Maximization

• GMM: Gaussion Mixture Model

• RW: Random Walk
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• HMRF: Hidden Markov Random Field

• HMM: Hidden Markov Model

• ANN: Artificial Neural Network

• RDF: Random Decision Forest

• ExtraTrees: Extremely Randomized Trees

• DNN: Deep Neural Network

• CNN: Convolutional Neural Network

• ReLU: Rectified Linear Unit

• LReLU: Leaky ReLU

• PReLU: Parametric ReLU

• SReLU: S-shaped ReLU

• ELU: Exponential Linear Unit

• RMSProp: Root Means Square Propogation

• BV: Brain Volume

• BGV: Background Volume

• NTBV: Non Tumor Brain Volume

• NTBGV: Non Tumor Background Volume

• TV: Tumorous Volume

• RFR: Random Forest Regressor

• FRRN: Full Resolution Residual Network

• RU: Residual Unit

• MLP: Multi Layer Perceptron
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Appendix B

Comparison: Conventional Methods

Table B.1 covers the comparison of conventional methods for brain tumor segmen-

tation. The comparison is based on the pre-processing techniques, dataset, number

of images and DSC. The pre-processing techniques are:

• BFC - Bias field correction

• IN - Image normalization

• HM - Histogram matching

• NR - Noise Removal

Table B.1: Summarization of conventional brain tumor segmentation methods.

Ref. Pre-
processing

Dataset # im-
ages

DSC (%)

[31] BFC, IN BraTS 2014 200 Validation
WT:86,TC:79,ET:59 Test
WT:88,TC:83, ET:72

[32] BFC, IN BraTS 2015 186 Training
WT:88,TC:77,ET:68

[33] NR, HM BraTS 2016 200 WT:89,TC:77,ET:67



Table B.1 – continued . . .
Ref. Pre-

processing
Dataset # im-

ages
DSC (%)

[34] NR BraTS 2012 30 TC:53,ED:25

[35] - BraTS 2013 30 HGG WT:84,TC:54,ET:67
LGG WT:81,TC:54, ET:11

[36] BFC BraTS 2013 30 HG TC:62,ED:59

[37] - BraTS 2012 28 TC:66,ED:56

[40] IN, HM BraTS 2017 285 Validation
WT:79,TC:67,ET:61 Test
WT:77,TC:61, ET:50

[41] - BraTS 2018 285 Validation
WT:80,TC:63,ET:57 Test
WT:73,TC:58,ET:50

[42] - Custom 40 TC:85,NC:75,ET:80

[43] BFC, IN,
HM

BraTS 2012 30 HGG TC:62,ED:61 LGG
TC:49,ED:35

[44] BFC, HM BraTS 2013 208 WT:83,TC:71,ET:68

[45] HM, IN BraTS 2014 200 Training
WT:84,TC:68,ET:72
Valid/Test WT:87,TC:76,
ET:64

[46] NR, IN,
BFC

BraTS 2013 30 Training WT:83,TC:66,
ET:58 Challenge
WT:84,TC:73, ET:68
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Appendix C

Comparison: CNN/FCNN Methods

The comparison of the methods summarized in Table C.1 is based on the pre-

processing techniques, FCNN architectures, activation functions, loss functions,

post-processing, and DSC achieved. The pre-precessing techniques considered for

the comparison are:

1. Intensity clipping: 1 % of highest and lowest frequencies are clipped.

2. Bias field correction.

3. Z-score normalization: Z = (x−µ)/σ .

4. Histogram matching: Histogram of all the images is match with the reference

histogram.

5. Image normalization: Min-max normalization.

6. Intensity standardization with Nyul approach [121].

7. Image denoising: applies noise filtering for e.g. Gaussian noise filtering.

8. Intensity rescaling : rescaling the intensity range between some specific lim-

its.

The post-processing techniques used for segmentation result improvement are:

1. Connected component analysis: Analyse the connected components and re-

moves the component with the volume below some threshold.

2. Conditional random field.

3. Morphological pperators to remove false positives and fill the holes.

4. Relabelling the output label: Enhancing tumor labels below some threshold

are relabelled as necrosis.
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Appendix D

Comparison: Classifiers for OS Prediction

Table D.1: Comparison of OS prediction on the BraTS validation dataset.

Ref. Method # features/ type
of network

Dataset Accuracy
(%)

[75] RFR and MLP 66 BraTS 2017 52.6

[81] ANN 4 BraTS 2017 42.4

[95] 2D CNN - BraTS 2017 55

[96] Linear Regression
Model

9 BraTS 2018 32.1

[98] RF 14 BraTS 2018 46.4

[93] MLP 468 BraTS 2018 57.1

[94] Linear Regressor 1 BraTS 2018 50

[99] RF 13 BraTS 2018 59

[100] RF 13 BraTS 2019 58.6

[122] SVM with linear kernel - BraTS 2018 35.7

[123] RF 4 BraTS 2017 48.5

[124] ensemble of Xboost,
SVM, MLP, DT, RF,
LDA

900 BraTS 2018 51.9

[125] MLP 83 BraTS 2018 54

[126] Xboost 195 BraTS 2017 50


	List of Figures
	List of Tables
	Introduction
	Brain Tumor
	Brain Tumor Grades tumorgrades:2020

	Medical Image Modalities
	MRI Physics currie2013understanding
	MRI Modalities

	Brain Tumor Treatment
	Motivation of the Research
	Research Problems and Objectives
	Outline of the Dissertation Report

	Preliminaries
	Pre-processing Techniques
	Image Registration
	Skull-Stripping
	Bias Field Correction
	Intensity Normalization

	Dataset
	Segmentation Task
	Overall Survival Prediction Task

	Post-processing techniques
	Connected Component Analysis
	Conditional Random Field
	Morphological Operations

	Evaluation Metrics
	Summary

	Literature Review
	Conventional Brain Tumor Segmentation Methods
	Basic Methods
	Generative Methods
	Discriminative Methods

	Initial Implementation: K-means Clustering 
	Limitation of Conventional Methods
	Deep Neural Network
	Evolution of DNN
	Design Aspects of CNN
	CNN Architectures
	Handling Class Imbalance Problem
	CNN Approaches for Brain Tumor Segmentation
	Brain Tumor Segmentation using CNN and FCNN
	Overall Survival Prediction

	Summary

	The Development of New Encoder-Decoder Architecture
	Hardware and Software Specifications for Algorithm Development
	Fully Convolutional Neural Network
	2D Encoder-Decoder FCNN
	2D Encoder-Decoder Dense FCNN
	3D Encoder-Decoder Dense FCNN
	Pre-processing
	Post-processing
	Results

	Summary

	Overall Survival Prediction
	Radiomics Features
	Random Forest Classifier
	Random Forest Regressor
	OS Prediction for BraTS 2019
	OS Prediction for BraTS 2020

	Summary

	Conclusion and Open Research Challenges
	Conclusion
	Open Research Challenges

	Bibliography
	Appendices
	List of Abbreviations
	Comparison: Conventional Methods
	Comparison: CNN/FCNN Methods
	Comparison: Classifiers for OS Prediction

