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Abstract

Glioblastoma, also known as Gliomas, is a brain tumor and is graded as a type-

IV tumor by the World Health Organization. This tumor is well known for its

low survival rate and poor prognosis. It originates from glial cells and is the

most prevalent form of neoplasm in the central nervous system. Annually, six

cases of gliomas are reported per 100,000 individuals in the United States. De-

spite significant technological advancements, a definitive cure is not yet available.

The current treatment approach involves the most extensive safe removal of the

tumor, followed by simultaneous administration of radiation and chemotherapy.

Currently, experts delineate tumors in each image slice for performing biopsy or

resection across all the planar views (axial, coronal, and sagittal), which is labo-

rious, lethargic, and subjective. In contrast, for predicting survival days (SD), the

current practice includes multiple pathological and histological examinations of

specimens obtained during surgery.

Implementing automated brain tumor segmentation (BTS) can significantly

assist oncologists in optimizing treatment strategies, improving patient outcomes,

and ensuring better overall care. Furthermore, it allows for efficient utilization

of resources and reduces the potential for human error. Additionally, the predic-

tion of SD is vital for tailoring treatment plans to each patient’s unique needs and

condition. This predictive data guides decisions regarding the timing and inten-

sity of surgical interventions, selecting suitable therapeutic options, and managing

post-operative care. Automation in the prediction of SD can aid clinicians in es-

timating a patient’s prognosis and potential survival time, allowing them to make



well-informed selections about suitable treatment strategies and patient care. De-

veloping an efficient, easily accessible, and robust method for BTS and SD pre-

diction is essential and challenging in the current landscape. Therefore, this thesis

focuses on formulating a robust methodology for BTS and SD prediction that is

well-equipped to function effectively within a resource-constrained environment

(with limited computing and memory resources).

We employed a triplanar (2.5D) network, which balances 2D and 3D segmen-

tation networks regarding performance and computational requirements. We in-

tegrated lightweight attention mechanisms to enhance segmentation performance

and mitigate the increase in trainable parameters. This integration improved the

Dice score of the concurrent channel and spatial attention (CCSAv1) network for

enhancing tumor (ET), increasing it from 0.618 to 0.679. Notably, the number of

trainable parameters increased by 0.256,M, reaching a total of 10.589M. Further,

we post-processed the segmentation to remove false positive lesions. The Dice

similarity coefficient for the Brain tumor segmentation (BraTS2020) challenge

training set is 0.736 for enhancing tumor (ET) lesions, 0.896 for whole tumor

(WT) lesions, and 0.841 for tumor core (TC) lesions. On the BraTS2020 valida-

tion set, these scores stand at 0.713 (ET), 0.873 (WT), and 0.778 (TC), which are

comparable to those achieved by leading 3D models like the method proposed by

Soltanineja et al., which achieved scores of 0.660 (ET), 0.870 (WT), and 0.800

(TC).

Again, for SD prediction, we extracted a comprehensive set of radiomics-

based and image-based features. Subsequently, we conducted feature selection to

identify a set of 29 dominant features. We trained ensemble-based learning mod-

els, e.g., random forest (RF) regressor and extra-random forest regressor (ERFR)
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models, to predict the SD of patients. We validated the robust nature of the feature

set by obtaining a correlation map and Spearman ranking coefficient (SRC). The

best scores on the BraTS2020 training set are 0.504 (accuracy), 59927.38 (mean

squared error (MSE)), 20101.86 (median squared error (medianSE)), 107835.95

(standard deviation of the squared error(stdSE)), and 0.725 SRC. On the valida-

tion set, the scores are 0.586 (accuracy), 76529.43 (MSE), 41402.78 (medianSE),

130978.47 (stdSE) and 0.52 (SRC). The performance of the proposed SD predic-

tions on the validation set is better than cutting-edge techniques on multiple met-

rics, such as McKinley et al., who achieved scores of 0.414 (accuracy), 098704.66

(MSE), 36100.00 (median SE), 152176.00 (stderr), 0.253 (SRC).

Despite the remarkable achievements of machine learning (ML) models, their

integration into the medical field is constrained, primarily because of the profound

consequences on human life and the inherent black-box nature of these models.

Therefore, to understand the decisions made by blackbox ML models, we used

various post-hoc interpretation methods. The impact of the features is investigated

on two levels: the overall sample or generic behavior and the individual sample

or local behavior. Techniques such as Shapley additive explanations (SHAP), par-

tial dependency plots (PDP), and accumulated local-effect (ALE) are utilized for

observing generic behavior. Conversely, methods including SHAP, SHAP-force

plot, SHAP waterfall plot, and local-interpretable model-agnostic explanations

(LIME) are employed to explore the local impact.

Explanations obtained from these analyses were then utilized to extract bio-

logical significance from the features. The insights drawn from the visual graphs

were consistent with the existing understanding in the medical domain. The fea-

ture set under investigation primarily comprises radiomic features renowned for
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capturing heterogeneity and indicating tumor malignancy through pixel intensity.

However, these features have limitations in directly correlating with tumor malig-

nancy, which is more closely tied to the molecular landscape. To address this, we

conducted an analysis linking radiomic features with gene expression in glioma

patients, allowing for direct biological inference. This area is known as radio-

genomic. Our radiogenomic study examined gene expressions with both strong

correlations and those exhibiting uncorrelated characteristics. Additionally, we

explored gene expressions exhibiting behaviors akin to our feature set. When

gene expressions correlate with radiomic features, it validates the relevance of

those features in capturing tumor characteristics or biological processes. More-

over, identifying gene expressions that mimic radiomic features may lead to dis-

covering biomarkers for predicting tumor behavior, prognosis, or treatment re-

sponse.
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Chapter 1

Introduction

This section provides essential information on brain tumors, including their char-

acteristics and diagnostic imaging methods. It then outlines the problem state-

ment, research objectives, and the dataset employed.

1.1 Brain tumors with their traits

A brain tumor is an aggregation of tissue formed by the uncontrolled growth of

cells in the brain. More than 150 different forms of brain tumors have been doc-

umented, falling into two main categories known as primary and metastatic /sec-

ondary brain tumors. [AANS (2023)].

Primary brain tumors develop from the brain or their adjacent local tissues.

These tumors are categorized as glial (comprising glial cells) or nonglial (arising

within or on brain structures such as nerve fibers, blood channels, and glands)

and can be classified as benign or malignant. Conversely, metastatic brain tumors

stem in other regions of the body, such as the breast or lungs, before spreading

1



Chapter 1. Introduction

to the brain, frequently through the blood channels. These tumors are identified

as cancerous and are classified as malignant. The nature of the tumor can be

exhibited in Fig. 1.1.

Figure 1.1. Tumor development and its evolution into complex stages [of Ency-
clopaedia Britannica (2024)].

The World health organization (WHO) devised a grading scheme to determine

the malignancy or benignity nature of a tumor based on histological characteris-

tics, including high malignancy, extensive invasiveness, rapid growth, susceptibil-

ity to aggressive necrosis, and rapid recurrence, which can be seen in Table1.1.

Further, as per the Central Brain Tumor Registry of the United States (CBTRUS)

statistical report, approximately 1 million Americans are believed to be living with

a primary brain tumor, and about 28% of all brain tumors are malignant [Ostrom

et al. (2022)].

Glioblastoma is a Grade-4 tumor and represents the most frequently occur-

ring primary malignant brain tumor. It comprises over 60% of all brain tumors

diagnosed in adults and accounts for approximately 80% of all malignant tu-

mors [Hanif et al. (2017)]. The five-year survival rate is only 6.9%, with a me-
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dian survival period of just eight months [National Brain Tumor Society - Brain

Tumor Facts (n.d.)]. In the case of a new diagnosis, the typical treatment ap-

proach involves surgery (extent of resection) followed by concurrent radiation

and chemotherapy. Resection is a surgical procedure aimed at eliminating a tu-

mor, while “residual” pertains to the portion of the tumor that remains within the

body post-surgery. A more favorable patient prognosis is typically associated with

complete surgical removal of the entire tumor. Whenever the surgical team and

the patient assess the risks as acceptable, it is advisable to consider surgery to re-

move all or most of the tumor. These surgical outcomes are categorized into four

classes:

• Gross total resection (GTR): This denotes the removal of the entire visible

tumor, but microscopic cells may remain.

• Near total or subtotal resection: In this case, a substantial portion of the

tumor is excised.

• Partial: Only a part of the tumor is surgically removed.

• Biopsy only: This category involves removing a small tumor section exclu-

sively for diagnostic testing.

Glioblastoma comprises multiple tumor lesions, including Enhancing/Active

tumor (ET), Tumor core (TC), and Whole tumor (WT). Delineating gliomas into

these distinct lesions is inherently difficult due to the extreme intrinsic heterogene-

ity in tumor boundaries, appearance, histology, shape, and location. Brain tumors,

including gliomas, pose significant diagnostic challenges, are difficult to treat, and

often exhibit resistance to conventional therapies. A significant difficulty arises
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from the complexities of delivering drugs to the brain and the inherently high

heterogeneity of these tumors across radiographic, morphologic, and molecular

landscapes. Regrettably, there is no established treatment for recurrence. De-

spite this, depending on the patient’s condition, operative intervention, radiation

therapy, immunotherapy, chemotherapy, or systemic treatment with angiogenesis

inhibitors are all potential avenues for treatment. [Kim & Lee (2022)].

Accurate segmentation, however, remains pivotal in strategically planning and

monitoring treatment. Manual segmentation demands extensive medical knowl-

edge, consumes significant time, and is susceptible to human error. Furthermore,

the manual procedure lacks uniformity and the ability to be replicated, adversely

impacting outcomes and potentially resulting in inaccurate prognoses and treat-

ments. Typically, a radiologist takes more than 7 hours to label one such sample

[G. Wu et al. (2021)]. Therefore, it is unsurprising that there is a strong demand

for efficient and effective automatic segmentation techniques. Numerous machine

learning (ML) approaches have been suggested for tumor segmentation and over-

all survival prediction. Nevertheless, these techniques often operate as black-box

models, offering no insight into their decision-making processes. Strengthening

the transparency and interpretability of these deep learning methods is vital for

their widespread adoption in clinical applications.
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TABLE 1.1
WHO Brain tumor types and grading [Louis et al. (2021)].

Tumor
Grade

Types Traits

Low
grade

Grade I
• Craniopharyngioma

• Chordomas

• Pilocytic astrocytoma

• Gangliocytoma

• Ganglioglioma

• Potentially treatable through
surgical intervention alone

• Long survival period

• Least malignant/(benign)

• Non-invasive

Grade
II

• Pineocytoma

• “Diffuse” astrocytoma

• Pure oligoden-
droglioma

• Mildly invasive

• moderate tumor progression

• May reoccur at a more ad-
vanced grade

High
Grade

Grade
III

• Anaplastic ependy-
moma

• Anaplastic astrocytoma

• Anaplastic oligoden-
droglioma

• Malignant

• Invasive

• Tend to recur as higher grade

Grade
IV

• Glioblastoma multi-
forme

• Medulloblastoma

• Ependymoblastoma

• Pineoblastoma

• Most lethal

• Rapid progression

• Extensively invasive

• Relapse of tumor

• Likelihood for necrosis

1.2 Diagnostic brain scans/ Imaging modalities

Brain imaging, also known as neuroimaging, encompasses diverse techniques to

directly or indirectly envision the brain’s structure, function, or pharmacology

[BrainLine (2023)]. By employing these methods, neuroscientists gain insight
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into the inner workings of the living brain, enabling a deeper understanding of

functions associated with specific brain regions. Brain MRI scans from a mag-

netic field intensity of 11.7 tesla were released in April 2024. The images exhibit

remarkable resolution considering the brief acquisition time with 0.2 mm in-plane

resolution and 1 mm slice thickness, corresponding to a volume equivalent to sev-

eral thousand neurons. To achieve similar image quality, conventional MRI scan-

ners available in medical facilities (1.5 or 3 tesla) would typically require hours

of scanning [CEA (French Alternative Energies and Atomic Energy Commission)

(April 2024)].

Brain imaging can be divided into two primary categories:

• Structural imaging - focuses on the brain’s structure and aids in diagnos-

ing significant intracranial diseases, such as tumors and injuries. Examples

include Magnetic resonance imaging (MRI), Diffusion-based MRI (such as

Diffusion tensor imaging (DTI)), and Computerized axial tomography (CT).

• Functional imaging - assesses various aspects of brain function to eluci-

date the connections between brain activity in specific regions and partic-

ular mental processes. This type of imaging primarily serves as a research

tool in the fields of cognitive neuroscience and neuropsychology. Examples

of this type of imaging are functional MRI (fMRI), Electroencephalogram

(EEG), Positron emission tomography (PET), and Evoked-related potentials

(ERP).

In recent decades, MRI has emerged as a widely employed technique for as-

sessing brain tissues in clinical settings. The notable advantages of MRI encom-

pass its non-invasiveness, non-exposure to ionized radiation, and capability to pro-
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vide highly detailed images of the brain. This is facilitated by superior spatial

resolution resulting from strong magnetic gradients. This heightened resolution

is possible due to the distinct responses of tissues within grey and white matter

and other brain parts to these magnetic gradients. This differentiation identifies

various tissue types and structures [Hirsch et al. (2015)]. Unlike CT scans, the

signal characteristics in MRI vary due to diverse acquisition protocols. Tumor

cells exhibit varying intensity distributions when captured by different scanners,

each having differences in field strength, voxel resolution, and field of view. MRI

in three distinct clinical diagnosis plans, including the axial plane, sagittal plane,

and coronal, is depicted in Figure 1.2.

Figure 1.2. MRI in three diagnostic planar views: axial, sagittal, and coronal.
The image is sourced from the BraTS dataset, acquired utilizing the ITK-SNAP
software application [Yushkevich et al. (2006)].

The advantages of multimodal MRI images (including T1 (native-T1), T2-

weighted, post-contrast (T1-ce), and fluid attenuation inversion recovery (FLAIR))

lie in their ability to provide a comprehensive view of the examined area by com-

bining information from different MRI techniques or sequences. This approach

enhances diagnostic accuracy and provides a more detailed and nuanced under-

standing of tissue characteristics. Multimodal MRI can offer improved sensitiv-
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ity, specificity, and overall diagnostic capability compared to individual imaging

modalities, allowing for a more thorough medical diagnosis and research assess-

ment.

In the T1-ce modality, the ET lesion exhibits hyper-intensity, while the TC, in-

cluding the ET and necrotic and non-enhancing parts, is also visible. The necrotic

(NCR) and non-enhancing (NET) tumor core can be observed in the T1-ce modal-

ity, and the whole tumor (WT), encompassing the TC and edema (ED), is visible

in FLAIR, with the ED appearing as a hyper-intense signal.

1.3 Motivation

Since the median SD are meager, accurate brain tumor segmentation and SD

predictions are essential for various medical applications, including surgery and

healthcare planning. Manual tracing by radiologists is inherently subjective and

becomes impractical with a growing number of patients. This highlights the need

for automated segmentation and SD prediction, especially in developing countries

like India, which is heavily dense. Here, healthcare is strained, and the doctor-to-

patient ratio is significantly lower for severe diseases like cancer, which require

costly treatments. Similarly, predicting SD is a task that is both laborious and

susceptible to error, yet it is crucial. In such cases, technology intervention be-

comes imperative in aiding experts with decision-making and surgical planning,

facilitating more comprehensive and affordable treatments.

Therefore, we developed a methodology for BTS and SD that balances perfor-

mance and computational resources. This technological support not only assists

experts in their battle against cancers and in enhancing survival rates but also
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serves densely populated countries by making quality healthcare more accessible.

However, incorporating technology into the medical domain is challenging, con-

sidering its impact on human life. Understanding the rationale behind the model’s

decision is crucial before integrating it into practice. Therefore, we investigate the

interpretability of decision-making of these ML models for SD prediction.

1.4 Problem specifications

The problem statement is “Achieving robust automatic segmentation of brain tu-

mors and predicting survival days using volumetric multimodal MRI images.”

This statement breaks down into two tasks:

1. Robust automated segmentation of brain tumor-lesions in volumetric pre-

operative multiparametric MRI scans [Menze et al. (2014)]. This involves

segmenting tumors into ET, WT, and TC regions. The TC comprises NET/

NCR and ET, while the WT encompasses the TC and edema, as illustrated

in Figure 1.3.

2. SD prediction of patients is based on segmentation of tumors. This is further

classified into three categories [Menze et al. (2014)]:

(a) Short-term survivor, if the SD is < 300 days.

(b) Mid-term survivor, if the SD is between 300 and 450 days.

(c) Long-term survivor, if the SD is > 450 days.
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Figure 1.3. Clinical experts conducted manual annotation in the dataset. Progress-
ing from left to right in the image patches: the entire tumor appears in FLAIR-
MRI (A), the tumor core is evident in T2-MRI (B), and the enhancing tumor
lesions can be observed in T1-ce (depicted in blue) encircling the necrotic com-
ponents of the core (depicted in green) (C). These segmented tumor lesions are
combined, shown in (D): edema (depicted in yellow), non-enhancing (solid tis-
sue) (depicted in red), necrotic (fluid tissue) (depicted in green), and enhancing
core (depicted in blue). [Menze et al. (2014)].

1.5 Research intents

This research aims to enhance network architecture, striving for reduced com-

putational and memory requirements without compromising robust segmentation

outcomes. The segmentation outcomes are refined using a post-processing tech-

nique. These refined tumor segmentation results will then be utilized to predict

patients’ SD precisely and to extract visual insights into the behavior of features

and their significance in SD prediction. This process facilitates a deeper under-

standing of decision-making mechanisms employed by ML models in predicting

SD. The specific objectives of this research are outlined below:

• Develop a robust network framework for segmenting brain tumors in resource-

constrained environments.
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• Develop an algorithm for accurately predicting the SD of patients diagnosed

with Glioblastoma brain tumors.

• Deriving visual explanations and extracting insights from the decision-making

process of the ML models for SD prediction.

• Deriving biological significance from the feature set used for SD prediction

and connecting with genomic data (radio-genomics).

1.6 Data sources

The development of robust BTS and accurate prediction of SD heavily rely on

the quality and availability of datasets. In the medical domain, obtaining standard

and ample datasets is highly challenging. There are currently few 3D large vol-

ume datasets such as the BraTS (since 2012) [Bakas et al. (2017, 2018); Menze et

al. (2014)], synthetic whole-head MRI BTS dataset [Dorjsembe & Xiao (2023)].

BraTS segmentation on sub-Sahara Africa population for adult glioma (since 2023)

[Adewole et al. (2023)], and segmentation on pediatric tumors (since 2023) [Kaze-

rooni et al. (2023)].

The BraTS, introduced in 2012, addresses this challenge by providing a sub-

stantial, volumetric, multimodal, and high-quality MRI-based labeled dataset.

This initiative accelerates research and is a pivotal platform for developing robust

segmentation models, offering significant assistance to the medical community.

Over the years, BraTS has evolved consistently, becoming one of the widely used

standard and large datasets for glioblastoma BTS. In the BraTS challenge since

2021, there are currently 1821 samples of MRI images. However, the BraTS2020
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dataset was explicitly chosen for this study to align with the research objectives

and accommodate system constraints. Moreover, the discontinuation of SD pre-

diction in the BraTS challenge after 2020 reinforced the relevance of utilizing the

BraTS2020 dataset for our investigation.

The BraTS2020 dataset encompasses 369 samples from 19 organizations, each

with distinct image-acquiring standards and scanning devices. Experts anno-

tated ground-truth segmentation labels for these samples and hand-crafted them.

The validation set includes 125 samples, and the test set includes 166 samples.

Each sample includes four 3D-MRI modalities, including native-T1, T1-ce, T2-

weighted, and FLAIR, which can be seen in Figure 1.4. Details of modalities

include [Menze et al. (2014)]:

• Native-T1: Originally acquired in sagittal or axial planes, with a slice thick-

ness between 1 and 6 millimeters.

• T1ce: Native-T1 with contrast-enhanced agent gadolinium image, acquired

in 3D form, and each voxel in dimensions of 1 millimeter in all directions,

ensuring uniform spatial resolution for most patients.

• T2-weighted: Acquired in axial planes, with a slice thickness between 2 and

6 millimeters.

• FLAIR: Acquired in axial, coronal, or sagittal orientations with a thickness

varying between 2 and 6 millimeters.
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Figure 1.4. Multiparametric MRI through an axial plane mapped with ground
truth image [Rajput et al. (2022)].

Achieving homogenization of these data involved rigid co-registering image

volumes of all subjects to the T1-ce MRI, which typically possessed the highest

spatial fidelity. Subsequently, all images were resampled to a standardized axial

orientation with an isotropic resolution of 1 millimeter. Skulls were also removed

from the images. The ground-truth MRI scans are annotated with unique values to

delineate specific tumor lesions: background pixels are annotated as 0, NET/NCR

lesions are annotated as 1, ED lesions as 2, and the ET/AT lesions as 4. The

Ground truth for the validation and test sets is held back by the challenge orga-

nizers, who will use it to evaluate the model of the participants and their ranking.

However, the developed models can be assessed using the online assessment sys-

tem of BraTS2020 1. Each image’s depth, width, and height are 155, 240, and

240, respectively.

In contrast, regarding SD prediction, the BraTS dataset comprises meta-data

such as age, SD, and resection information. The training dataset includes 236

patients’ samples, while the validation and test sets contain 29 and 107 samples,

1https://ipp.cbica.upenn.edu/
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respectively. In contrast, we employed TCGA for radio-genomic analysis, obtain-

ing clinical information and gene expression details corresponding to 35 samples

that align with the BraTS dataset. The clinical information includes gender, race,

and treatment information.

A brief history of BraTS’s evolution is outlined in Table 1.2 and can be visu-

alized in Figure 1.5.

(a) (b)

Figure 1.5. Timeline of dataset evolution for (a) BTS (b) SD prediction.

TABLE 1.2
A brief history of BraTS’s evolution [Menze et al. (2014); Bakas et al. (2017)].
The dataset included synthetic images in the initial years of the BraTS challenge
(2012 and 2013). However, starting in 2014, synthetic images were removed.

Year Training (T), Validation

(V), and Test (Tt)

samples for BTS

T, V, Tt for SD

prediction

Tumor lesions

2012 • T: 30 samples

• V: 14 samples N.A

Two tumor labels:

“edema” and “core”
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2013 • T: 30 samples

• V: 24 samples

N.A Same as BraTS 2012

2014 • T: 216 Samples

• V: 38 Samples NA

tumor labels:

“necrosis”, “edema”

“non-enhance core”,

and “enhance core”

2015 • T: 274 Samples

• V: 53 samples

NA Same as BraTS 2014

2016 • T: 274 Samples

• V: 191 samples

NA Same as BraTS 2014

2017 • T: 285 samples

• V: 46 samples

• Tt: 146 samples

• T: 163 samples

• V: 33 samples

• Tt: 95 samples
Same as BraTS 2014

2018 • T: 285 samples

• V: 66 samples

• Tt: 191 samples

• T: 163 samples

• V: 53 samples

• Tt: 131 samples
Same as BraTS 2014

2019 • T: 335 samples

• V: 125 samples

• Tt: 166 samples

• T: 210 samples

• V: 29 samples

• Tt: 107 samples
Same as BraTS 2014

2020 • T: 369 samples

• V: 125 samples

• Tt: 166 samples

• T: 236 samples

• V: 29 samples

• Tt: 107 samples
Same as BraTS 2014

2021-

2023

• T: 1251 samples

• V: 219 samples

• Tt: 570 samples
Discontinued Same as BraTS 2014
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1.7 Evaluation measures

The Dice-similarity coefficient (DSC), sensitivity, and specificity metrics assess

the agreement between the segmented regions and the ground truth annotations at

the voxel level. In contrast, another set of scores assesses the distance between

segmentation boundaries, known as surface distance measures. A notable illus-

tration is the Hausdorff distance (HD). DSC is particularly useful for evaluating

the accuracy of the segmentation algorithms because it quantifies the overlap be-

tween the predicted and ground truth segmentations. A DSC of 1 signifies com-

plete overlapping between actual and predicted pixel labels, whereas a score of

0 denotes no overlap. HD measures the alignment between the predicted and

ground truth boundaries. A smaller HD value indicates better alignment between

the predicted and ground truth boundaries, while a larger distance suggests poorer

alignment. Both metrics offer unique perspectives on assessing segmentation per-

formance. While the DSC evaluates the overall similarity between segmentations,

the HD offers insights into the spatial accuracy of segmentation boundaries. By

leveraging both metrics, one can gain a holistic understanding of the segmentation

network’s capabilities, effectively identifying their strengths and weaknesses.

In contrast, accuracy assesses the performance of SD classification models by

measuring how often the model’s predictions align with the actual class labels in

the dataset. On the other hand, mean squared error (MSE) evaluates the average

squared difference between the actual values and the predicted values generated

by the SD model. Spearman ranking coefficient (SRC) is a statistical metric used

to evaluate the strength and direction of relationships between two ranked features

or variables. Accuracy is straightforward to interpret as it indicates the model’s
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ability to classify instances correctly. MSE provides a quantitative assessment of

the degree to which the model’s predictions match the true values.

Conversely, SRC can aid in variable selection and feature importance analysis

in regression models. Variables with strong SRC values with the target variable

may be considered significant predictors during the model training process. The

evaluation schemes for BTS and SD prediction include the following measures.

1. (DSC) (or F1 measure): It measures the voxel-wise overlapping between

two objects by dividing their intersection by the total size of both objects.

True positive (TP) denotes the case where the model correctly predicts the

positive label. While False positive (FP) occurs when the model incorrectly

predicts the negative class as positive. False negative (FN) denotes instances

where the model incorrectly predicts the positive label as negative. It is

computed as depicted in Equation 1.1 below:

DSC =
2T P

2T P+FP+FN
(1.1)

2. Jaccard Similarity Coefficient (Jaccard): It is referred to as the intersection

over the union of two different sets as defined in Equation 1.2 below:

Jaccard =
T P

T P+FP+FN
(1.2)

3. Sensitivity (True positive rate (TPR)): It is a metric that accurately deter-

mines tumorous voxels. This is defined in Equation 1.3 below:

Sensitivity =
T P

T P+FN
(1.3)
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4. Specificity (True negative rate (TNR)): It is a metric that accurately locates

non-tumorous voxels. This is defined in Equation 1.4 below:

Sensitivity =
T N

T N +FP
(1.4)

5. HD: It computes the maximum distance between any point in one set and its

nearest point in the other. If x and y be two non-empty subsets of a metric

space (M,d), then their Hausdorff distance dH(x,y) can be explained in

Equation 1.5 below:

dH(x,y) = max{sup
x∈X

in f
y∈Y

d(x,y),sup
y∈Y

in f
x∈X

d(x,y)} (1.5)

Where sup is the supremum and inf is the infimum.

6. Accuracy: It determines the ratio of correct predictions, encompassing both

true positives and true negatives, among the total number of predictions.

True negative (TN) is the outcome where the model correctly predicts the

negative class as illustrated in Equation 1.6 below:

Accuracy =
T P+T N

T P+FN +T N +FP
(1.6)

7. SRC: It is a statistical measure that assesses the strength and direction of the

monotonic association between two features or variables. It is calculated by

comparing the ranks of corresponding observations. The formula for the

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 18



Chapter 1. Introduction

SRC is specified in Equation 1.7 below:

ρ = 1− 6∑d2
i

n(n2 −1)
(1.7)

Furthermore, interpretability tools like Shapley additive explanations (SHAP)

and partial dependency plots (PDP) were employed to gain a comprehensive in-

sight into the overall behavior of features. At the same time, SHAP, Accumulated

local effect (ALE), and LIME were utilized to localize the understanding of fea-

ture behavior.
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Literature Survey

The delineation of brain tumors in medical images has become a notable focus of

research in medical image analysis. The advent of automated and semi-automated

brain tumor segmentation methods has introduced a significant paradigm shift in

medical image analysis, offering the potential to reduce errors, enhance efficiency,

and increase reproducibility. However, it is a challenging problem due to its inher-

ent structure, location, and histology variations. The evolution of BTS methods

can be broadly categorized into conventional and more recent approaches utilizing

Deep neural networks (DNNs).

2.1 Conventional methods for BTS

Conventional methods primarily consist of non-deep learning-based approaches.

Mohammed et al. [Mohammed et al. (2023)] classified them based on their evo-

lutions or characteristics, such as

1. Primitive methods

20
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2. Supervised-learning methods

3. Unsupervised-learning methods

2.1.1 Primitive methods

Among these traditional approaches are two prevalent image processing tech-

niques: threshold-based methods and region-based methods.

Thresholding based technique: This method rapidly and efficiently segments im-

ages by comparing pixel intensities with predefined thresholds, including global

and local thresholding approaches [Gordillo et al. (2013); J. Liu et al. (2014)].

Global thresholding, suitable for MR images with consistent intensity among ob-

jects, involves selecting a single threshold value for the whole image. While ef-

fective for homogeneous intensity objects [Wong (2005)], it may fail when tissue

structures overlap in intensity. In contrast, local thresholding is effective when de-

termining a threshold value from the entire image histogram is challenging. This

is especially true when gradient effects are minimal or improved segmentation

results require multiple thresholds [Bhargavi & Jyothi (2014)].

Region-growing techniques: This technique analyzes individual pixels in an im-

age, grouping adjacent pixels with similar properties based on a predefined sim-

ilarity measure to delineate distinct regions. The region-based approach encom-

passes methods such as “region growing” and “watershed”.

Region growing, a widely utilized technique in medical image analysis, par-

ticularly MRI segmentation, starts with a seed point in the area of interest. Neigh-

boring pixels are then added based on predefined similarity criteria until no more

pixels can be included. Despite its advantages, such as accurately distinguish-
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ing regions with similar intensity, it faces challenges like the partial volume effect

[Lakare & Kaufman (2000)]. To address this, a modified version incorporates gra-

dient information for a more precise boundary definition. Overall, region growing

is a valuable and less complex method, computation efficient, and remarkably ef-

fective for tissues, tumors, and homogeneous regions [Salman et al. (2006); Kaus

et al. (2001)].

The watershed algorithm partitions an image into segments using topographic in-

formation, treating each pixel as a different height on a topographic surface. It

identifies local minima as markers and floods the image with marker intensities,

forming catchment basins akin to valleys on a map. While effective for object

recognition and analysis, it may lead to over-segmentation in noisy medical im-

ages. Techniques to address this issue include merging regions based on specific

criteria, as discussed in [Gies & Bernard (2004); Fisher & Aldridge (1999); Bhat-

tacharya & Das (2008); Ratan et al. (2009)] for both 2D and 3D brain MRIs.

In summary, conventional brain tumor segmentation techniques struggle with the

intricate task of delineating complex tumor structures, hampered by inherent lim-

itations. Therefore, a growing focus is on advancing and promoting automated

techniques to address these complexities effectively.

2.1.2 Supervised-learning methods

The algorithm receives input data (images) and associated labels in supervised

methods, signifying the intended output or segmentation. The objective is for the

algorithm to understand and establish a link from the input data to achieve the

desired segmentation, drawing insights from the provided labels. The key advan-
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tages of these methods are that they offer notable advantages in image analysis,

particularly in achieving precise and customizable segmentation results. In ex-

isting literature, various researchers have categorized and discussed supervised

segmentation techniques as outlined below:

Techniques based on pixel-level classification: These methods, employed in im-

age processing and computer vision, involve categorizing individual pixels within

an image into predefined categories or classes. The objective is to assign a la-

bel/class to every pixel according to its features, often facilitated by ML or deep

learning algorithms. In the context of brain tumors, some of the commonly em-

ployed supervised classification methods found in the literature include the artifi-

cial neural networks (ANNs), the K-nearest neighbor (KNN), the random forest

(RF), and the support vector machine (SVM).

Mishra et al. [Mishra (2010)] and Wang et al. [S. Wang et al. (2015)] utilized

ANNs for brain tumor diagnosis, trained with statistical features. Ramteke et al.

[Ramteke & Monali (2012)] used KNN for classification and anomaly detection

with statistical features. [Havaei et al. (2014)] introduced a semi-automatic tu-

mor segmentation method using KNN for voxel label classification. Moreover,

RF proves to be particularly effective in addressing challenges related to high-

dimensional feature vectors, multi-class classification, and high-grade gliomas

(HGG), as demonstrated by the utilization of RF for tumor categorization in the

study by [Koley et al. (2016)]. Phophalia et al. [Phophalia & Maji (2018)]

proposed cascaded RF ensembles for voxel classification, while Sandabad et al.

[Sandabad et al. (2016)] utilized SVMs for tumor detection and classification.
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2.2 Unsupervised-learning methods

These techniques do not require labeled training data, and images are divided into

homogeneous regions based on attributes such as pixel intensities or texture fea-

tures. These methods accurately segment complex structures like heterogeneous

tumors [Gordillo et al. (2013)]. However, in the segmentation of brain tumors, the

absence of prior information regarding the structure of tumors or pixel intensity

value makes unsupervised segmentation challenging, leading to limited research

focused on unsupervised techniques. The unsupervised segmentation methods are

categorized as follows:

Technique based on clustering: Clustering-based segmentation, an unsupervised

method, involves dividing unlabeled image data into clusters of pixels or vox-

els. This process groups pixels with similar intensities, sharing common features

within the same cluster while separating dissimilar pixels into different clusters.

In MR brain images, k-means clustering has been employed by [M.-N. Wu et

al. (2007)] to differentiate tumorous tissues from normal tissues. The authors

achieved this by transforming a grayscale MRI image into an RGB image and

enhancing its attributes through pseudo-chromatic transformation. The Fuzzy C-

means clustering (FCM) algorithm, extensively utilized in MRI [Balafar (2014)],

categorizes pixels into multiple classes by assigning memberships based on the

distance between pixel units and class centers [X. Yang & Fei (2011)]. Notably,

FCM allows pixels to belong to two or more classes, and its adaptability to data

with multiple cluster solutions is attributed to the use of fuzzy membership func-

tions [Ganesh et al. (2017)]. While the Markov random field (MRF) model is a

powerful tool for image segmentation, its applicability for online processing is
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limited due to the high computational cost. [Ahmadvand et al. (2017)] introduced

a hybrid approach, combining the MRF model with the watershed algorithm to

mitigate the drawbacks associated with MRF. Similarly, [Sun & Wang (2008);

Yousefi et al. (2011)] proposed an optimized MRF-based model that can effec-

tively segment tumors with less computational time.

Techniques based on model: Previous discussions have predominantly focused on

2D image segmentation, while segmenting 3D image data presents a notable chal-

lenge. This challenge is commonly addressed through model-based segmentation

techniques like parametric deformable models, geometric deformable models, or

level sets [Gordillo et al. (2013)]. These methods utilize prior knowledge about

object characteristics, location, or regions of interest within an image. Paramet-

ric deformable models, also called active contour models, excel in segmenting,

matching, and tracking images of anatomical structures, leveraging constraints

from image data and prior knowledge about structure location, size, and shape.

However, they face challenges in effectively handling topological changes, such

as contour merging and splitting, in 3D images. This problem has been mitigated

by introducing geometric deformable models or level sets [Gordillo et al. (2013)].

Various methods based on parametric deformable models include [C. Xu & Prince

(1997, 1998)], while those based on geometric models include [J. Liu et al. (2014);

H.-H. Chang & Valentino (2008)].

2.3 Deep learning methods

DNN is a form of “deep learning”, which refers to the utilization of neural network

models comprising multiple stacked functional layers, typically with more than
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five layers [J. Liu et al. (2014)]. The versatility of DNNs spans a range of areas,

such as pattern recognition, machine vision, healthcare, speech processing, and

Natural language processing (NLP), rendering them widely applicable in various

fields because:

1. DNNs automatically learn meaningful representations of input data, subse-

quently improving feature extraction and performance.

2. They excel in learning hierarchical features, enabling the capture of intricate

patterns across multiple layers of abstraction.

3. DNNs excel in handling high-dimensional data, which enables their effec-

tiveness in tasks such as image/pattern recognition and NLP.

4. They can approximate/estimate continuous mathematical functions, enabling

the modeling of complex input-output mappings across various domains.

For this tremendous success across multiple domains, DNN demands challenging

requirements such as:

1. DNNs demand substantial computational resources and can be computa-

tionally intensive, leading to longer training times and higher hardware re-

quirements.

2. They heavily depend on extensive labeled data for training, which may not

always be available for all possible scenarios.

3. Tuning hyperparameters for optimal performance can be time-consuming

and require extensive experimentation.
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4. Overfitting is a common problem with DNNs, especially when trained on

small datasets or with overly complex architectures.

5. DNNs often function as black-box models, making interpreting their deci-

sions or diagnosing issues challenging.

The typical structure of a DNN utilized for BTS is shown in Figure 2.1, where

each component plays a crucial part in accurately segmenting tumor tissues. Input

images can be single or multi-parametric. Additionally, preprocessing techniques

are applied to remove inhomogeneity, and data augmentation is performed to am-

plify the diversity of the input images, which aids in enhancing the generalization

and robustness of DNN models. Moreover, in the scenario of a 3D model, a 3D

patch is selected to match the Graphics processing unit (GPU) requirements for

training the DNN model. In contrast, for a 2D model, image slices are chosen.

The loss function may be singular, combined, or weighted to enhance the train-

ing process. Conversely, images undergo preprocessing during testing, patches

or slices are extracted, and labels are predicted using the trained DNN model.

Finally, the segmented output can be further refined to adjust false positive labels.

2.3.1 Evolution of DNN

The evolution of DNN in the BTS field is rendered in Figure 2.2. Since the

late 1990s, neural networks have been used for tumor segmentation. Still, their

application was limited until the early 2000s due to the challenge of training

them, stemming from a scarcity of high-end computational resources [J. Liu et al.

(2014)]. Early research on BTS aimed to devise specialized deep Convolutional

neural networks (CNN) for accurate tumor segmentation. Recent breakthroughs,
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Figure 2.1. The typical structure of a DNN utilized for BTS.

Figure 2.2. The evolution of DNN in the BTS field [J. Liu et al. (2014)].

including the Fully convolutional network (FCN) and U-Net and recent devel-

opments [J. Long et al. (2015); Ronneberger et al. (2015); Isensee et al. (2017);

Strudel et al. (2021)], have spurred innovations in building encoder-decoder archi-

tectures, eliminating connected layers to enable end-to-end tumor segmentation.

CNN, a subtype of DNN, has emerged as a leading algorithm, consistently

demonstrating its dominance in computer vision tasks. Its effectiveness extends

across diverse fields, including biomedical imaging, where CNNs have showcased

expert-level performance. CNN is designed to process data using a grid pattern,
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such as images. Inspired by the organization of the animal visual cortex [Hubel

& Wiesel (1968)], it is crafted to autonomously and dynamically learn layers of

abstraction of features, progressing from low- to high-level patterns. The overview

of CNN architecture is illustrated in Figure 2.3.

2.3.2 CNN design elements in BTS networks

In the BTS network, the development of CNN generally includes the following:

1. Basic Layers such as Convolution layer, Pooling/subsampling layer, Activa-

tion layer, Flatten layer, Normalization layer, and Dense layer 2) Techniques for

regularization, 3) Optimization methods, 4) Loss functions, and 5) Layer weight

initializations and regularizers. Brief discussions about each element are as fol-

lows:

• Convolution layer: This layer extracts essential features from the input data.

It employs a weight-sharing procedure, utilizes local regions of input data,

and offers some level of insensitivity to shifts.

• Activation layer: It introduces nonlinear behavior to the network, allow-

ing it to capture and learn detailed/complex mappings from input to out-

put. Some of the activation functions include Rectified linear unit (ReLU),

Leaky ReLU (LReLU), Parametric ReLU (PReLU), Exponential linear unit

(ELU), and its variants.

• Pooling/subsampling layer: This layer identifies significant features from

non-overlapping neighborhoods. Its objectives encompass: 1. Decreasing

parameter counts, 2. Mitigating overfitting, and 3. Attaining translation
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invariance. Several prevalent pooling techniques comprise average pooling,

max pooling, and global average pooling (GAP) functions.

• Normalization layer: It ensures consistent input scaling for each layer, pro-

moting improved convergence and stability during training. Some of the

popular layers are Batch, Group, and layer normalization.

• Flatten layer: This layer transforms the multi-dimensional output from pre-

vious layers into a one-dimensional (1D) feature vector, thereby setting it

up for input into the fully connected layers.

• Fully connected/Dense layer: It converts the 1D feature vector into predic-

tions or classifications. They map feature maps to the corresponding output

classes or labels.

• Loss functions: They enhance the learning procedure by refining similarity

within classes and separability between classes. Some commonly utilized

loss functions are dice loss, focal loss, and cross-entropy loss. Combina-

tions of these loss functions and their variants are also common.

• Techniques for regularization: These address the overfitting problem. Com-

mon techniques include dropout, L1/L2 regularization, reduced learning

rate, learning-rate scheduler, and early stopping.

• Optimization: It fine-tune a model’s parameters during training to mini-

mize the loss function. Optimization algorithms iteratively adjust weights

and biases during backpropagation, facilitating learning. Some optimiza-

tion techniques are Root means square propagation (RMSProp), Adaptive

gradient algorithm (Adagrad), and Nesterov accelerated gradient descent.
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Figure 2.3. An overview of CNN architecture and the training process [Yamashita
et al. (2018)].

• Initialization and normalization of layer weights: It accelerates the learning

phase by ensuring proper initial values for weight updates.

2.3.3 Architectural variants of CNNs for BTS

Most of the architectural innovation in semantic segmentation comes from the

success of DNN in image classification and transfer learning. A breakthrough

came from a Fully convolution network (FCN) [J. Long et al. (2015)], where fully

connected layers were replaced with convolution layers. This allowed 1. Ac-

cepting input of many sizes and generating output of different sizes, unlike dense

layers, which require a fixed-size input. 2. Convolutional layers in neural net-

works produce feature maps as outputs and preserve the spatial arrangement of

features in the input. Unlike dense layers, this compresses all spatial information

into a single vector. 3. Skip connections facilitate the straightforward passage of

information from earlier layers to later layers, minimize the vanishing gradient
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problem, and strengthen the training process. The primary limitations of FCN in-

clude inefficient localization of labels, especially for objects with intricate shapes

or fine details, the incapability to analyze global contextual information, and the

lack of a mechanism for processing information across various scales.

UNet [Ronneberger et al. (2015)] addresses these challenges through its encoder-

decoder architecture, wherein the encoder (contracting path) initiates with convo-

lutional layers succeeded by max-pooling functions. Here, the dimensions of the

spatial feature map gradually decrease while the feature channel counts increase,

enabling the capture of contextual information.

In this encoder segment, the number of feature channels typically expands

further into the network, enabling the extraction of progressively abstract fea-

tures. while the decoder (expansive path) gradually restores object details and

spatial dimensions using upsampling or deconvolution operation while reducing

the count of feature channels. Each layer in the decoder is connected to the en-

coder’s respective layer, called a skip connection. These skip connections enable

the network to pertain to fine-grained details during upsampling by combining

elementary/low-level features from the contracting path with abstract/high-level

features from the expansive path. Finally, the final output layer typically includes

a 1× 1 convolution, succeeded by a sigmoid or softmax activation function for

pixel-wise classification in semantic segmentation tasks. While softmax is com-

monly used for multi-class segmentation, sigmoid is often employed for binary

segmentation tasks.

Other architectures like SegNet [Badrinarayanan et al. (2017)] and DeepLab

[L.-C. Chen et al. (2017)] are alternative FCN architectures utilized for the BTS

task. Recently, residual connections [K. He et al. (2016)] and attention mechanism-
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based networks [Bahdanau et al. (2014)], including visual transformers [Vaswani

et al. (2017)], have garnered attention. Residual connections entail incorporat-

ing the outcomes of a preceding layer into the input of a subsequent layer, thereby

mitigating the vanishing gradient issue and aiding the training of deeper networks.

On the other hand, attention mechanisms, such as those utilized in transformers,

allow networks to focus on relevant input information while suppressing irrele-

vant parts of the input data. Unlike traditional attention mechanisms, transform-

ers employ self-attention mechanisms that enable capturing relationships between

all input tokens simultaneously, facilitating more effective learning of long-range

dependencies in sequential data.

2.3.4 Strategies for addressing class imbalance

In medical imaging, class imbalance often occurs because abnormalities (such

as tumors or lesions) are relatively rare compared to normal tissue. Addressing

class imbalance is crucial to ensure precise and robust segmentation outcomes.

Considering the BTS context, the class imbalance is very significant, as can be

seen in Table 2.1.

TABLE 2.1
The distribution of sub-categories at the voxel level within the training data of the
BraTS2020 dataset. [J. Zhang et al. (2020)].

Pixel-(labels) Percentage (%)
Background-(0) 98.46%
Edema-(2) 1.02%
Enhancing tumor-(4) 0.29%
Necrotic and Non-enhancing tumor-(1) 0.23%

This issue is addressed using the following methods:
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1. Image preprocessing: Removing non-brain pixels from images (such as

skull and scalp regions).

2. Data augmentation: It plays a crucial role in addressing class imbalance

by generating synthetic samples for minority classes, thereby balancing the

dataset. This process helps the model avoid bias towards the majority class

and improves its ability to generalize to all classes more effectively.

3. Patch extraction: By extracting patches from regions of interest containing

both minority and majority classes, the approach ensures a more balanced

representation of data, enhancing the model’s accuracy in classifying all

classes effectively.

4. Loss functions: They work by adjusting the share of each class (weigh-

ing) to the overall loss calculation during training. Among the frequently

employed loss functions are the Generalized dice loss (GDL) [Sudre et

al. (2017)] function, Focal loss (FL) function, and Weighted cross-entropy

(WCE) function. Combining or weighting these functions is also prevalent,

especially in addressing intricate challenges such as brain tumor segmen-

tation. In the GDL, the weighting scheme is based on the inverse of the

volume of each class that is introduced. In WCE, weight is computed based

on the distribution of foreground class probabilities across all samples. In

FL, weight is calculated based on predicted probability and the gamma pa-

rameter (positive value focusing on class).
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2.3.5 Recent advancements in CNN architectures and train-

able parameters for BTS

In the context of BTS, a concise summary of the proposed networks, encompass-

ing both segmentation strategies and trends in network complexity, is as follows:

[Urban et al. (2014)] in BraTS2014 utilized an ensemble of two 3D CNN net-

works having a four-layered architecture. The authors employed 15 filters in the

initial layer and 25 for the subsequent two layers. In the final layer, six filters were

utilized, each corresponding to one of the six different classes. Subsequently, a

second network was trained, mirroring the first, adding an extra layer incorporat-

ing 40 filters of size 5× 5× 5 preceding the last layer. The mean DSC on the

validation set was 87 for WT, 77 for TC, and 73 for ET. Similarly, [Zikic et al.

(2014)] proposed a five-layered 2D CNN. The first layer incorporated a convolu-

tional layer with 64 filters sized 5×5, succeeded by a max-pooling function in the

subsequent layer. The third layer included a convolutional layer with 64 filters of

size 3× 3, the fourth layer was composed of a fully connected layer having 512

nodes, and the fifth layer was a softmax layer for classification. The average DSC

on the training set was 83.7±9.4 (WT), 73.6±25.6 (TC), and 69.0±24.9 (ET).

In the BraTS2015 challenge, [Pereira et al. (2016)] introduced two similar 3D-

based architectures for HGG and Low-grade glioma (LGG) images. The HGG

architecture comprised 10 layers, while the LGG architecture comprised an 8-

layered CNN. The average DSC on the training set was 0.87, 0.73, and 0.68 for

WT, TC, and ET, respectively. In 2016, [P. D. Chang et al. (2016)] proposed a 5-

layered 2D CNN network with a larger input image size of 240×240, allowing the

network to capture more detailed information from the input images. The network
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includes a total of 130,400 trainable parameters. Only HGG images from the

training set were utilized to train and validate the result. the DSC on the validation

set was 0.87 (WT), 0.81 (TC), and 0.72 (ET). In 2016, [Kamnitsas et al. (2017)]

introduced an efficient dual-pathway, multi-scale 11-layer deep network based

on 3D CNN layers. The network structure comprised two parallel convolutional

streams that handled the input data at various scales, aiming to achieve a broad

receptive field for the ultimate classification task while maintaining computational

efficiency. The DSC on cross-validation was 89.6 (WT), 76.3 (TC) 72.4 (ET).

Notably, this model demanded a 12GB GPU for training, with input images of

size 25×25×25.

In 2017, [Alex et al. (2017)] proposed 23 layered FCNNs similar to UNet

architecture. This FCNN model was trained on axial slices having dimensions

240× 240 extracted from MRI modalities. The DSC on the validation set were

0.83 (WT), 0.69 (TC), and 0.69 (ET). In 2018, [Isensee et al. (2019)] proposed

an efficient 3D-Unet with residual connections having an input image size of

128× 128× 128. The model was trained on the additional institutional dataset.

The authors ensembled 5 such networks for the label prediction, where the train-

able parameters for each network were 14.4M, and the total parameters were

72M. The DSC on the validation set (66 cases) was 91.26 (WT), 86.34 (TC), and

80.87 (ET). Similarly, Myronenko et al. [Myronenko (2019)] employed an en-

semble of 10, 3D Unet-based variational encoder-decoder architecture with large

input patches sized 160×192×128 and reconstructed raw data using a variational

encoder branch. Each network had extensive GPU memory consumption, specif-

ically on an NVIDIA V100 32 GB GPU with 18.8M trainable parameters. The

total number of trainable parameters was 188M. The DSC on the validation set
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was 0.91(WT), 0.87 (TC), and 0.82(ET).

Recently, in 2020, a transformer-based 3D UNet [Hatamizadeh et al. (2021)]

utilized a DGX-1 cluster with 8 NVIDIA V100 GPUs (32GB× 8 = 256GB) for

training, where they ensembled 8 such models for segmenting brain tumors. Each

model in this setup had 61.98 M parameters, resulting in a total of 495.84 M

trainable parameters. The DSC on the validation set was 0.926 (WT), 0.885 (TC),

and 0.858 (ET).

Analyzing the trends in the proposed networks for brain tumor segmentation,

performance has seen improvement due to the accessibility of extensive datasets

and computational resources. The utilization of 3D models and ensembles is

prevalent in brain tumor segmentation. However, it’s crucial to acknowledge that

the complexity of network architectures, while contributing to improved results,

has introduced additional challenges. Besides longer training times, managing

computational resources, and addressing potential overfitting, the current clinical

settings underscore the imperative for efficient networks. The need is for enhanced

accuracy and models that can operate efficiently without compromising precision,

ensuring practical utility in clinical applications. Additionally, there is a need to

bridge the gap between the machine and clinical experts by facilitating an under-

standing of the decisions made by these ML models. Furthermore, deciphering

these highly complex models will pose additional challenges.
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2.4 Importance of SD prediction for glioblastoma pa-

tients
Accurate prediction of overall SD for glioblastoma patients is imperative for ef-

fective treatment planning and monitoring. However, this task poses challenges

due to its dependency on BTS, radio imaging parameters, the non-uniformity in

radiomics, limited clinical information, and a relatively small dataset. The trend

of the dataset evolution is shown in Section 1.6 in Table 1.2 and Figure 1.5.

In 2015, Chaddad et al. [Chaddad & Tanougast (2016)] utilized a texture-

based Gray-level co-occurrence matrix (GLCM) to highlight the connection be-

tween glioma phenotype and overall survival prediction. The author used classi-

fiers such as Discriminant analysis (DA), Naı̈ve bayes (NB), Decision trees (DT),

and an SVM. The study was conducted on 40 samples from The Cancer Imaging

Archive (TCIA). The study underscored the importance of GLCM in the realm of

SD prediction. Discriminating GBM phenotypes using GLCM features achieved

the highest accuracy, sensitivity, and specificity, with values of 79.31%, 91.67%,

and 98.75%, respectively. Similarly, [L. Liu et al. (2016)] utilized fMRI and

DTI imaging to analyze 147 HGG patients, categorizing them as either “good”

(if SD> 650 days) and “bad” (if SD < 650 days). Structural and functional brain

networks were constructed for each sample, and numerous graph-theory-based

features were extracted. The dataset also encompassed diverse clinical informa-

tion, including the patient’s age, tumor size, gender, tumor grading, histopatho-

logical type, spatial location, presence of epilepsy, precise location in the brain

lobes, and hemispheres of tumor lesions. Using the SVM classifier, the model
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achieved a prediction accuracy of 75%.

In 2019, Agravat et al. [Agravat & Raval (2019)] employed an RF regressor

model trained on statistical, shape features, and age information to classify the

SD of patients into long, medium, and short survival classes. Meanwhile, they

utilized a 2D Dense Unet network for segmentation using the BraTS dataset. The

model attained an accuracy 51.7% for survival prediction on the validation set. In

2020, McKinley et al. [McKinley et al. (2020)] proposed an ensemble of linear

and RF regressor models, utilizing patient age, the number of tumor cores, and

whole tumors for SD prediction derived from the segmented results. Their study

also proposed an ensemble of 3D-to-2D networks for BTS segmentation using the

BraTS dataset.

Similarly, Asenjo and Larraz Solıs [Marti Asenjo & Martinez-Larraz Solı́s

(2021)] introduced an ensemble of classification and regressor models, incorpo-

rating geometric, textural, statistical, and tumor location features. The accuracy

on the validation set is 41.4%. They utilized an ensemble of 2D and 3D Unet

networks for BTS using the BraTS dataset. In 2022-2023, Rajput et al. [Rajput

et al. (2022, 2023a)] employed gradient-boosting and RF regressors, incorporat-

ing statistical, shape, location, and texture features, and utilized a 3D Unet model

for BTS using BraTS dataset. The accuracy on the validation set is 62.1% and

55.2%, respectively. Cepeda et al. [Cepeda et al. (2021)] utilized diverse clas-

sifiers to classify patients into short-term survivors. The classifiers employed in

their analysis included a logistic regressor (LR), KNN, SVM, RF, and a Multilayer

perceptron (MLP). The authors conducted feature extraction, yielding a total of

15,750 features. These features encompass first-order statistics, histogram-based

features, and morphological, volumetric, and textural features. The NB classifier
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demonstrated superior performance on the test dataset, achieving an area under

the curve (AUC) of 0.769 and an accuracy rate of 80%.

In summary, existing literature suggests the importance of morphological, spa-

tial location, and radiomics-based features. Meanwhile, ensemble-based models

such as RF regressor were widely used. The RF regressor algorithm comprises an

ensemble of decision trees, each trained on a random subset of the training data.

This randomness helps in reducing overfitting and improving generalization and

makes it more robust [Rajput et al. (2021)]. Radiomics is an evolving discipline

of study that emphasizes extracting quantitative features from radiological scans.

It captures characteristics of tissues and lesions, including their shape and hetero-

geneity. Furthermore, it can track changes over time, such as during treatment or

monitoring, through serial imaging [Mayerhoefer et al. (2020)]. Therefore, it can

provide valuable insights into precision and personalized medicine (PPM).

Further, from the existing literature survey we identified a research gap for

BTS and SD prediction enumerated as follows:

• Due to high inhomogeneity between tumor lesions and within tumor lesions,

conventional MRI images were not able to capture physiological, metabolic,

and biological details of tumor lesions.

• Although various deep learning architectures hold promise for BTS, chal-

lenges persist due to tumor morphology complexity, imaging artifacts, and

the strength of MRI scanners.

• Existing segmentation techniques are very computationally and memory in-

tensive especially for real-time applications on edge devices.

• For SD prediction availability of ample dataset along with clinical and other

omics/multimodality information is essential.
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A Proposed Holistic Approach to Ef-

ficient Segmentation of Brain Tumor

and Predicting Survival Days

Considering the clinical significance and the reliance of both the BTS and SD pre-

diction tasks on factors such as diagnosis, treatment planning, and post-surgery

monitoring, our emphasis is on formulating a comprehensive approach for pre-

dicting BTS and SD within a constrained environment. In pursuit of our goal, i.e.,

to optimize a BTS architecture for resource constraint setup, we began with a 3D

U-Net based on the top-performing segmentation model [Isensee et al. (2017)]

and reduced the number of filters. This model comprised 8.3M trainable parame-

ters, necessitating a system setup with 256 GB RAM and 16 GB GPU. The DSCs

for BTS on the BraTS2020 validation set were 0.880 (WT), 0.858 (TC), and 0.759

(ET). Meanwhile, for SD prediction, the accuracy was 0.552 for the validation set.

Probing further optimization for both tasks and studying the trade-off between
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the parameter and accuracy, we explored the possibility of 2D-based and 2.5D

models. Since MRI is not inherently a 3D modality and is derived by fusing

2D slices of individual imaging planes (i.e., axial, sagittal, and coronal), some

factors may contribute to the possibility of 2D BTS (trained on the individual

plane) [McHugh et al. (2021)]. Considering the challenge, 3D MRI images were

reconstructed from 2D MRI images, where thicker 2D slices were preferred in

specific clinical situations to enhance the signal-to-noise ratio [McHugh et al.

(2021); Hausmann et al. (2018)]. This leads to resolution anisotropy, requiring

interpolation between slices for the 3D reconstruction of non-volumetric imag-

ing. In non-volumetric imaging, the resolution in the coronal and sagittal planes

is significantly lower than in the axial plane [McHugh et al. (2021)]. Also, in

the 2.5D model, segmentation results from all the planes are fused to obtain final

segmentation, including inter-slice information missing in 2D models [McHugh

et al. (2021)]. This aids 2D models in including some depth information like

3D models. Therefore, we investigated 2D-based U-net models for BTS and SD

prediction.

The proposed holistic approach for BTS and survival prediction can be seen in

Figure 3.1. It includes a segmentation module where segmentation networks were

utilized to segment tumors, as elaborated in the subsequent section 3.1. Further,

from the segmentation results, features are extracted and selected strategically

to find robust feature sets to predict SD. Lastly, an analysis is conducted on the

trained model to understand the decisions of the complex models and find the

biological relevance of the features.
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Figure 3.1. The complete pipeline to determine SD and its interpretability, utiliz-
ing BTS outcomes [Rajput, Kapdi, Raval, et al. (2024)].

3.1 Segmentation networks

The comprehensive architecture of the proposed segmentation network includes

data preprocessing, segmentation models, fusing segmentation probability maps

from multiple segmentation models, and post-processing, illustrated in Figure 3.2.

As discussed previously, our initial approach involved utilizing a 3D U-Net net-

work structure for segmentation. Subsequently, we proposed a novel 2.5D seg-

mentation network to address specific challenges and optimize performance. The

same preprocessing techniques were applied to both networks. This preprocess-

ing involved bias correction, a crucial step due to the inherent uneven intensity

distributions commonly found in MRI scans caused by bias fields. Therefore, our
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preprocessing pipeline began with bias correction utilizing the N4ITK package

[Tustison et al. (2010)] to address this.

Furthermore, non-brain regions were excluded from all multi-parametric MRI

scans. Then, the highest and lowest 1% of intensity values were eliminated. Fol-

lowing that, the intensity levels of each image slice were standardized using mean

and standard deviation values. For 3D segmentation, we have utilized the network

proposed by [Isensee et al. (2017)]. Random flipping and distortion within [0 -

0.25] factor were used as augmentation techniques.

The 2.5D segmentation network, which primarily consists of an ensemble of

2D models trained on axial, sagittal, and coronal planes, is presented in Figure

3.2. The basic architecture of the 2D model is the same for all the utilized models.

The input image slices had the following dimensions: 192(W )× 152(H) for the

axial model, 192(W )× 144(H) for the sagittal model, and 152(W )× 144(H)

for the coronal model. These variations in size arose from the orientation of the

imaging plane and the method used for MRI processing. During training, we

implemented random vertical and horizontal flips to reduce memory consumption

and enhance training efficiency on the fly. The proposed segmentation network

is based on an attention mechanism, enabling it to prioritize important aspects of

the input data while suppressing irrelevant information, enhancing its ability to

extract meaningful features and make accurate predictions.
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Figure 3.2. The holistic structure of the proposed 2.5D based segmentation archi-
tecture [Rajput et al. (2023b); Rajput, Kapdi, Roy, & Raval (2024)].

In this research, we investigate and analyze the effect of attention method-

ologies: Concurrent channel and spatial attention (CCSA) mechanism, Channel-

attention (CA), and Sequential-channel and spatial attention (SCSA) on variants

of planar and triplanar models (listed below). CA allows the network to modu-

late and weight each channel based on its relevance to the task at hand. CCSA

allows the network to capture spatial and channel correlations simultaneously,

while SCSA derives attention maps along channel and space and merges them.

The probability outcomes from these networks are averaged to derive the final

segmentation results.

1. Variants of planar are axial planar (AP), coronal planar (CP), and sagittal

planar (SP).
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2. Variants of triplanar based on CA, CCSA, and SCSA.

AP represents the ensemble of three 2D-based networks integrated with CA, CCSA,

and SCSA and trained on axial plane images. Likewise, CP and SP denote the en-

sembles of networks, incorporating CA, CCSA, and SCSA, trained on the coronal

and sagittal image planes, respectively. Lastly, we called it the Super-ensemble

model, which is the ensemble of all the variants of planar and triplanar models.

The details of each of these variants of segmentation models are discussed as

follows:

3.1.1 Architecture of planar (2D) and 2.5D models
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Figure 3.3. The axial ensemble network (2D), where segmented outcomes CA,
CCSA, and SCSA networks trained on axial images are combined to generate an
outcome. Similarly, coronal-ensemble and sagittal-ensemble planar networks can
be constructed and trained on coronal and sagittal images, respectively [Rajput et
al. (2023b)].
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The base network (shown in Figure 3.5) is trained with input images from the axial

plane. We created three models for the AP based on CA, CCSA, and SCSA. The

attention modules are implemented on the decoder side (with circular A symbols

in Figure 3.5). Similarly, three models are created for the CP and three for the

SP. Thus, nine models (three planes × three attention per plane) are trained with

the same hyperparameters and network structure. Different ensembles are created

using a suitable combination of the outputs from these nine networks, and they

are shown in Table 3.1. The planar ensemble combines outputs for the same plane

but with three different attention mechanisms. The outputs of three models from

the AP are combined to create an Axial - Ensemble. Similarly, outputs from three

CP and three SP models are combined to produce a Coronal - Ensemble and a

Sagittal - Ensemble, respectively. The axial planar ensemble is shown in Figure

3.3. The output of each model generates probability maps for each label for a

sample. Subsequently, averaging the probability maps for each label will generate

the final segmentation labels.

In the triplanar ensemble, we combine outputs from three planes - AP, CP,

and SP- and each has the same attention mechanism. For example, the model’s

outputs for AP, SP, and CP with CA attention are combined. Similar ensem-

bles are created using three orthogonal planes with CCSA and SCSA attention

methodologies. The triplanar ensemble is shown in Figure 3.4. We also created a

“Super-ensemble” combining planar and triplanar ensembles.
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Figure 3.4. An overview of the 2.5D network, where segmented outcomes gen-
erated from individual attention networks (e.g., CA network) trained on axial,
coronal, and sagittal images are combined to generate an outcome. Similar seg-
mented outcomes are generated from CCSA and SCSA attention networks trained
on three planes [Rajput et al. (2023b)].

The primary architecture for all the models is the same as shown in the subse-

quent section below:

3.1.2 Basic architecture and training details: 2D U-Net

Figure 3.5 illustrates the fundamental architecture employed in the proposed seg-

mentation methods. This architecture incorporates three attention mechanisms

designed for computational efficiency. They are depicted as the attention blocks

in the figure and are explained in section 3.1.3. The network structure of the sug-

gested 2D UNet can be observed in Figure 3.5. The architecture has 4 layered
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encoder-decoder paths; each layer consists of a ResNet [K. He et al. (2016)] like

convolution block.
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4

Convolution 2x2 layer

Convolution 3x3 layer

Convolution layer (Stride=2)

Upsampling and 
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Attention block Add layer

Notations

Input 2D Images

Skip-connection

Softmax activation

Figure 3.5. The basic structure of the proposed 2D-UNet [Rajput et al. (2023b);
Rajput, Kapdi, Roy, & Raval (2024)].

The 2D image slices have been randomly chosen to serve as the inputs for the

encoder path of every planar model. The input image size for each planar model

is specified in the preceding paragraph. In each layer of the encoding path, strided

convolution is utilized to halve spatial resolution while simultaneously doubling

the count of channels. The initial count of channels is 64; whereas similar to the

approach in Noori et al. [Noori et al. (2019)], each ResNet block consists of two

convolution blocks with a kernel size of 3×3, along with batch normalization and

a PRelu unit [K. He et al. (2015)]. On the decoder side, each layer decreases the

count of feature maps by half and doubles their size, using an upsampling layer

and a 2×2 convolution layer. Further, each layer feature map on the decoder side
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is concatenated to the encoder layer feature map. Finally, it is passed to the atten-

tion block, which recalibrates each feature map (channel-wise and/or spatially)

and forwards it to the subsequent layers. The network uses softmax activation

to output 4 channels, each for the NCR/NET, ET, ED, and background. Further,

these channels are combined to dissect the tumors into ET, TC, and WT regions.

This BTS network, built utilizing TensorFlow and Keras, runs on a Quadro

RTX5000 with a 16GB GPU and 128GB RAM. During the training phase, ran-

dom slices of dimensions 192(W )× 152(H) are produced for the axial model,

192(W )× 144(H) for the sagittal model, and 152(W )× 144(H) for the coronal

model, extracted from the input scans, where W is the width, and H is the height

of an image slice. To accommodate memory constraints, a batch size of 16 is set.

The network undergoes training utilizing a stochastic gradient descent optimizer

with a learning rate of 0.008. A combination of cross-entropy (CEloss) and gener-

alized dice-loss functions (GDloss) [Sudre et al. (2017)] is used as a loss function

to minimize class imbalance, as explained in the equation 3.1. Further, if the vali-

dation loss fails to decrease for 30 epochs, the learning rate is reduced by 0.5. The

Keras early-stopping mechanism also halts training if the validation loss does not

decrease for 50 epochs.

Loss = GDloss(Gt ,Ps)+CEloss(Gt ,Ps)

GDloss(Gt ,Ps) = 1−2
∑

C
l=1(Wl ×∑

N
i=1 gli × pli)

∑
C
l=1(Wl ×∑

N
i=1 gli × pli)

CEloss(Gt ,Ps) =− 1
N

N

∑
i=1

C

∑
l=1

(gli × log pli)

(3.1)

where Wl = 1
(∑N

i=1 gli)2 represents the adaptive weight for the lth channel, pli
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denotes the estimated likelihood of class l for voxel i, gli denotes the actual label

for class l for voxel i, gε Gt where Gt denotes the actual label and pε Ps where Ps

denotes the predicted label. Lastly, post-processing using the connected compo-

nent algorithm is performed on the segmented outcomes obtained from the super-

ensemble BTS model.

3.1.3 Attention mechanism: CA, CCSA, SCSA, CCSAv1

The attention mechanism is employed to boost the accuracy of the encoder-decoder

network. It explores the interdependencies between the channels or spatial loca-

tions. The primary purpose of this attention mechanism is to enable the network

to use the most pertinent portions of the input feature sequence in an adaptable

way, depending on the context it carries. Those input features can be within the

feature map (spatial attention) and across the feature map (called channel atten-

tion), which can further focus on enhancing performance. The most pertinent

input feature vectors receive the highest weights; less informative vectors receive

lower weights [Vaswani et al. (2017)]. The attention techniques of this work are

simple in structure and marginally impact the model complexity [Hu et al. (2018);

Roy et al. (2018); Woo et al. (2018)].

Channel attention (CA)

Each channel is weighted equally in standard convolution when producing the out-

put feature maps. It produces activation maps that collectively capture the spatial

and channel information by learning filters that obtain local spatial patterns across

every input channel. The channel attention mechanism weights each channel sep-
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arately, allowing it to recalibrate semantic attributes per salient features it carries

[Hu et al. (2018); L. Chen et al. (2017)]. While significant efforts are invested in

refining the combined representation of spatial and channel feature information,

there remains a substantial gap in the exploration of encoding spatial-wise and

channel-wise information separately. Contemporary studies have tried to resolve

this problem by formally demonstrating the interdependencies between feature

map channels. Recently, an architecture framework called “squeeze and excita-

tion (SE)” network was proposed, which has a simple structure and is easy to

integrate into the existing network. Therefore, we have also used SE techniques

to implement channel attention.

SE works on two principles: First, it utilizes GAP to compress the feature

maps into a single numeric value (number of channels) to gain global statistics of

the channels. Second, the excitation operator captures nonlinear and non-mutual

exclusive relations between the channels and a gating mechanism that utilizes a

sigmoid activation to assign weights to each channel based on the information it

holds. As depicted in Figure 3.6, the initial fully connected (FC) layer reduces

the size of the channel (C) to C/ratio. While the native method [Hu et al. (2018)]

recommended using ratio = 16. Based on empirical findings, we determine that

ratio = 8 produces the most favorable outcomes for our method. Opting for

ratio = 16 would notably decrease the channel counts, constraining the model’s

capacity to capture the context effectively. In summary, it squeezes across the

spatial dimensions and weights across the channel dimensions to improve feature

representations by exploring interdependencies between feature channels.
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(a)

(b)

Figure 3.6. (a) A channel attention (CA) module [Hu et al. (2018)]. (b) The mod-
ified CA mechanism with ratio value is 8 [Rajput et al. (2023b); Rajput, Kapdi,
Roy, & Raval (2024)].

Mathematically, a squeeze operation on the feature map U can be defined as:

z = Fsq(U) = ∑
C
c=1

[
1

H×W ∑
H
i=1 ∑

W
j=1 uc(i, j)

]
= GAP (3.2)

where, (U) = {u1,u2, ...uc} is a feature-map which consists of multiple filters

{1,2, ...cth}. The excitation can be defined as:

Fex = F(z,W ) = σ

 2stFC layer︷ ︸︸ ︷
W2(δ (W1(z))︸ ︷︷ ︸

1stFC layer

)

 (3.3)

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 53



Chapter 3. A Proposed Holistic Approach to Efficient Brain Tumor Segmentation and Overall Survival Prediction

where σ is a sigmoid function and W1 and W2 are the weights of 1st and 2st FC

layers, respectively, and z is the feature map after the squeeze operation. The CA

module is presented in Figure 3.6 where Figure 3.6 (a) defines operations of the

CA mechanism, and detailed working is presented in Figure 3.6 (b).

Concurrent channel and spatial attention (CCSA)

Similarly, taking clues from the study mentioned in [Roy et al. (2018)] sug-

gests calibrating the feature maps parallelly along spatial and channel dimensions.

Combining the results can enhance the spatial and channel information. There-

fore, we experiment with infusing concurrent channel and spatial squeeze-and-

excitation blocks into the segmentation network. The CCSA module is illustrated

in Figure 3.7.

Figure 3.7. Concurrent channel and spatial attention (CCSA) [Roy et al. (2018);
Rajput et al. (2023b); Rajput, Kapdi, Roy, & Raval (2024)].
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Sequential channel and spatial attention (SCSA)

This module sequentially creates attention maps spanning the channel and spatial

dimensions from an intermediary feature map. It subsequently aggregates these

attention maps with the input feature map, allowing for an adaptable recalibration

of features [Woo et al. (2018)]. In the SCSA architecture, the channel attention

mechanism is employed through the CA module. In this scenario, rather than

using GAP, two specific components (max pooling function and average pooling

function) with identical architectures are constructed and combined to estimate

the weight of the feature maps. The first FC layer’s output channel (C) is also

reduced to C/ratio. Here, we also empirically found that ratio = 8 generates the

best results. It incrementally derives a 1D channel attention map (Ac), such that Ac

ε {C×1×1} and a 2D spatial-attention map (As), such that As ε {1×H×W}. For

the channel and spatial module, channel and spatial information aggregation uses

max-pool and average-pool operations that capture effective features across the

channel and spatial dimensions. Mathematically, the whole attention procedure

can be described as:

F ′ = Ac(F)⊕F (3.4)

F ′′ = As(F ′)⊕F ′ (3.5)

where, ⊕ indicates elementwise multiplication, F is a feature map, Ac(F) is

the channel attention map, As(F ′) is the spatial-attention map and F ′′ is the ulti-

mate output.
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Whereas Ac(F) and As(F ′) can be defined as:

Ac(F) = σ [ml p{AP(F)}+ml p{MP(F)} ] (3.6)

As(F ′) = σ
[

f 7×7
c {ml p{AP(F ′)} ·ml p{MP(F ′)}}

]
(3.7)

where σ is the sigmoid function, ml p is the multi-layered perceptron, AP, MP are

the average and max pooling operations on the feature map, respectively, · is the

concatenation operation, and f 7×7
c indicates a convolution operation with a 7×7

kernel size. The SCSA module is illustrated in Figure 3.8.
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Figure 3.8. Sequential channel and spatial attention (SCSA) [Woo et al. (2018);
Rajput et al. (2023b); Rajput, Kapdi, Roy, & Raval (2024)].
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Improved Attention mechanism: CCSAv1

The framework of the improved CCSAv1 mechanism is presented in Figure 3.9,

showcasing the concurrent integration of channel and spatial attention mecha-

nisms. We implement channel attention using the CA module. Whereas to im-

plement spatial attention, we employ a convolution layer with a 1×1 kernel size

to perform the squeeze operation, followed by an excitation operation where a

sigmoid function is applied to generate attention weights used for modulating the

original feature maps [Rajput, Kapdi, Roy, & Raval (2024)]. We observe that

(CCSA) underperforms in the experimental trials of the CA and SCSA attention

techniques. Hence, we adapt the Spatial and Channel Squeeze and Excitation

Block component from Roy et al. [Roy et al. (2018)] into the CCSA, which is

referred to as CCSAv1.

Figure 3.9. The improved CCSAv1 mechanism [Roy et al. (2018); Rajput et al.
(2023b); Rajput, Kapdi, Roy, & Raval (2024)].

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 57



Chapter 3. A Proposed Holistic Approach to Efficient Brain Tumor Segmentation and Overall Survival Prediction

In the native approach by Roy et al. [Roy et al. (2018)], spatial attention

compression includes utilizing C ×K, where C is the count of filters, and K is

kernel size with 1× 1. However, unlike the native approach where C remains

constant at 1 for each level of U-Net, our enhanced CCSAv1 mechanism dynami-

cally adjusts C, increasing with the corresponding depth of the UNet. It starts at a

base value of 64 and increases gradually to 512. This improved CCSAv1 method

conserves more data by compressing it into a slightly larger form, thus retaining

vital details without overly enlarging the model’s dimensions. By dynamically

modifying the count of filters according to the levels of the U-Net, the model be-

comes more adaptable and proficient at capturing features suitable for different

complexities, which may lead to enhanced understanding and segmentation capa-

bilities. Moreover, this dynamic adaptation of filter numbers, corresponding to the

U-Net’s depth, enables the model to handle diverse scales of features and objects

present in images, thereby enhancing the overall performance of segmentation.

In summary, for the triplanar BTS network, three variants of networks are

studied and optimized:

• Super-ensemble using CA, CCSA, SCSA attention mechanism.

• Super-ensemble using CA, CCSAv1, SCSA attention mechanism.

• Super-ensemble using CA, CCSAv1, SCSA attention mechanism and post-

processing.
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3.1.4 Results and discussions

As discussed in Section 3.1.1, we train nine models comprising three distinct

attention-based architectures across three anatomical planes in 2D slices. Fur-

ther, ensembles are created by combining their output probabilities and averaging

them to generate final segmentation results. Table 3.1 presents a quantitative eval-

uation of each variant on validation datasets. In the recent BraTS2023 challenge,

the benchmark scores achieved were DSC of 0.900 (WT), 0.867 (TC), and 0.850

(ET), along with HD scores of 14.940 (WT), 14.467 (TC), and 17.699 (ET) on

the validation set [Ferreira et al. (2024)]. These scores were achieved through

rigorous data augmentation and ensemble segmentation models to produce seg-

mentation results. In contrast, on the BraTS2020 validation dataset, the bench-

mark DSC scores were 0.912 (WT), 0.857 (TC), 0.798 (ET), and HD scores were

3.730 (WT), 5.640 (TC), 26.410 (ET) [Isensee et al. (2021)]. In their segmentation

method, the authors utilized rigorous data augmentation, region-based training, an

increased batch size, and an ensemble of models.

In our proposed segmentation method, ensemble models give the best seg-

mentation results from all the proposed variants. Table 3.1 showcases the top five

performing models across various variants, distinctly marked in red based on their

performance on the validation datasets, and their respective training outcomes can

be observed in Table3.2. Considering the DSC improvement of Super-Ensemble

(with/without post-processing) among all variants shown in Table 3.1, we use it

for comparison with the leading BraTS2020 methods in subsequent analysis.
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TABLE 3.1
The performance assessment of each variant of models was conducted on the vali-
dation set from BraTS2020. The most favorable outcomes are emphasized in bold
font. Training and validation outcomes from identical models are differentiated
utilizing consistent colors, with their corresponding training outcomes detailed in
Table 3.2. The top two performing models from the BraTS2020 challenge are
listed in the initial two rows. Matching colors are employed for the CCSA and
CCSAv1 models of the same category (exempting the initial two rows). All the
results presented herein are acquired from the BraTS-challenge evaluation portal+

DSC HD

Dataset Model Type Model Name Parameter
Numbers in
millions (M)

ET WT TC ET WT TC

Validation Ensemble of five 3D U-Nets Isensee et al.
(2021)

30.2×5 =
156 M

0.798 0.912 0.857 26.410 3.730 5.640

Validation Ensemble of eleven 3D
U-Nets

Yuan (2021) 16.5×11 =
181.5 M

0.793 0.911 0.853 18.196 4.097 5.888

Validation Axial CA 10.246 M 0.610 0.873 0.754 56.627 9.532 14.038

Validation Axial CCSA 10.247 M 0.618 0.854 0.738 52.666 13.759 17.896

Validation Axial* CCSAv1* 10.589 M 0.679 0.867 0.788 42.230 10.885 11.496

Validation Axial SCSA 10.333 M 0.670 0.866 0.760 46.227 9.328 15.22

Validation Coronal CA 10.246 M 0.633 0.836 0.747 54.469 19.712 22.547

Validation Coronal CCSA 10.247 M 0.629 0.827 0.743 58.344 23.447 22.538

Validation Coronal* CCSAv1* 10.589 M 0.662 0.840 0.740 42.864 16.491 25.476

Validation Coronal SCSA 10.333 M 0.642 0.825 0.738 52.114 25.978 19.806

Validation Sagittal CA 10.246 M 0.663 0.850 0.737 48.509 10.414 15.969

Validation Sagittal CCSA 10.247 M 0.652 0.835 0.759 49.567 14.381 15.010

Validation Sagittal* CCSAv1* 10.589 M 0.663 0.833 0.747 48.829 10.955 18.954

Validation Sagittal SCSA 10.333 M 0.680 0.853 0.756 46.402 17.448 18.758

Validation Axial Ensemble CA-CCSA-
SCSA

30.825 M 0.661 0.879 0.767 41.232 6.754 12.034

Validation Axial Ensemble* CA-CCSAv1-
SCSA*

31.167 M 0.683 0.883 0.784 42.620 6.285 11.863

Validation Coronal Ensemble CA-CCSA-
SCSA

30.825 M 0.648 0.849 0.762 53.748 16.502 15.713

Validation Coronal Ensemble* CA-CCSAv1-
SCSA*

31.167 M 0.664 0.850 0.759 47.828 14.301 18.964

Validation Sagittal Ensemble CA-CCSA-
SCSA

30.825 M 0.682 0.863 0.762 43.714 11.391 16.799

Validation Sagittal Ensemble* CA-CCSAv1-
SCSA*

31.167 M 0.681 0.857 0.758 48.279 10.795 14.991

Validation Triplanar Ensemble CA 30.737 M 0.669 0.871 0.771 44.512 6.929 12.558

Validation Triplanar Ensemble CCSA 30.739 M 0.667 0.860 0.773 45.395 9.764 13.708

Validation Triplanar Ensemble* CCSAv1* 31.767 M 0.699 0.863 0.777 35.713 7.173 14.529

Validation Triplanar Ensemble SCSA 30.999 M 0.693 0.868 0.776 42.274 10.120 13.989

Validation Super-Ensemble CA-CCSA-
SCSA

92.47 M 0.699 0.875 0.782 36.752 8.037 14.846

Validation Super-Ensemble (without
postprocessing)*

CA-CCSAv1-
SCSA*

93.50 M 0.704 0.875 0.785 35.440 6.962 14.560

Validation Super-Ensemble-pp (with
postprocessing)*

CA-CCSAv1-
SCSA*

93.50 M 0.713 0.873 0.778 31.563 6.347 13.274

Validation Native-UNet * without attention
mechanism*

7.698 M 0.669 0.862 0.786 44.046 11.750 12.841

+ https://ipp.cbica.upenn.edu/
* is an improved model/
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TABLE 3.2
The results on the training set are exclusively displayed for the best-performing
models on the validation set (highlighted in red). The most favorable outcomes
are indicated in bold text. Results from models are represented using consistent
colors for both training and validation sets. (As depicted in Table 3.1).

DSC HD

Dataset Model Type Model Name Parameter Numbers
in millions (M)

ET WT TC ET WT TC

Training Triplanar Ensemble SCSA 30.999 M 0.727 0.885 0.826 39.745 9.099 9.734

Training Triplanar Ensemble* CCSAv1* 31.767 M 0.727 0.892 0.829 34.538 6.828 6.128

Training Super-Ensemble CA-CCSA-SCSA 92.470 M 0.712 0.897 0.837 40.310 6.378 7.114

Training Super-Ensemble* CA-CCSAv1-SCSA
(without postpro-
cessing)*

93.500 M 0.724 0.898 0.843 39.489 5.884 5.710

Training Super-Ensemble-pp* CA-CCSAv1-SCSA
(with postprocess-
ing)*

93.500 M 0.736 0.896 0.841 35.842 6.005 7.041

* is a modified models/

Assessment of planar networks performance and parameter counts

Comparing the planar models, we observe that each model excels in segmenting

different regions. Training models using different planar views allows models

to capture distinct properties of lesions. For instance, among AP model types,

the CA model can dissect WT (DSC: 0.873) and TC (DSC: 0.754) regions well,

whereas the SCSA model dissects all the regions well, such as for ET (DSC:

0.670), WT (DSC: 0.866), TC (DSC:0.760). Similarly, among CP model types,

we observe that all the models (CA, CCSA, and SCSA) have moderate DSCs for

all the lesions. However, across all model types, the DSC for ET is better than

that of AP model types.

Whereas, among SP model types, the CA model dissects ET (DSC: 0.663)

and WT (DSC: 0.850) regions well, the CCSA dissects TC (DSC: 0.759) well,

and SCSA dissects all the lesions well (DSC: 0.680(ET), 0.853 (WT), 0.756(TC)).

The parameter count for all the model types, on average, is 10.27M.
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Further, a comparison is also conducted among planar ensembles. We observe

that the Axial ensemble and the Sagittal ensemble can dissect all the lesions well.

The DSC for Axial ensemble is 0.661 for ET, 0.879 for WT, and 0.767 for TC.

Whereas for Sagittal ensemble, they are 0.682 (ET), 0.863 (WT), and 0.762 (TC).

Furthermore, Coronal ensemble models trained on coronal view images perform

less than the other two planar images. The reason can be that some modalities are

acquired in 2D axial or sagittal view, and each slice has a specific thickness. So,

reconstructing it to coronal views requires an interpolation technique to fill that

thickness area. It causes anisotropy in resolution [Z. Wu et al. (2022)], meaning

discrepancy in resolution along different planes, which occurs due to differences

in the voxel size and acquisition parameters. It can be explicitly seen in Figure

3.10, where Figure 3.10(a) is the axial view of the Flair image, and the resolution

is intact compared to coronal and sagittal slice views shown in Figure 3.10(b) and

Figure 3.10(c). The coronal slice has the least detailed structure. In their work on

BTS, McHugh et al. [McHugh et al. (2021)] also highlighted the issue of data loss

caused by the coronal plane view. On average, the parameter count of our planar

ensemble models is 30.8M.

Assessment of triplanar networks performance and parameter counts

Triplanar is an ensemble of multi-view (axial, coronal, and sagittal) model types.

The triplanar ensemble of all the models has been able to dissect all the regions

well. The triplanar ensemble with CA has DSCs of 0.669 (ET), 0.871 (WT),

and 0.771 (TC), respectively, whereas, with CCSA and SCSA, it is 0.667 (ET),

0.860 (WT), 0.773 (TC) and 0.693 (ET) 0.868 (WT), 0.776 (TC) respectively.

Likewise, comparing triplanar models, both CA and SCSA exhibit superior per-
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formance compared to the CCSA model. On average, the parameter counts for all

the triplanar ensemble models is 30.8M.

Performance impact of attention mechanisms

Table 3.1 showcases the results of the Native U-Net segmentation network in the

last row, which does not incorporate an attention mechanism and is exclusively

trained on axial plan images. This model comprises 7.698M trainable parame-

ters. In contrast, the suggested CCSAv1 network trained on axial images has a

marginally higher parameter count, with an increment of 2.89M compared to the

Native U-Net. It displays a notable performance enhancement compared to the

Native U-Net model, with an increase of nearly 0.01 in the DSC for the ET area,

recognized as the most challenging region for precise segmentation. Observing

the HD metric, the proposed network exhibits a 0.865 mm enhancement compared

to the Native-UNet model.

Impact of improved CCSAv1 mechanism

An analysis of Table 3.1 highlights that the results of the CCSA model appear rel-

atively lower compared to the CA and SCSA models, even with the integration of

spatial and channel attention mechanisms. For example, in Table 3.1, the infor-

mation regarding the CCSA model trained on the axial images (4th row) exhibits

Dice-scores of 0.618 (ET), 0.854 (WT), and 0.738 (TC). In contrast, the CA model

(3rd row) demonstrates 0.610 (ET), 0.873 (WT), and 0.754 (TC), and the SCSA

model (6th row) showcases 0.670 (ET), 0.866 (WT), and 0.760 (TC) respectively.

Similar observations can be obtained on sagittal (11th, 12th, and 14th rows)

and coronal planes (7th, 8th, and 10th rows). The potential causes for the subpar
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performance of CCSA could stem from a combination of factors. This includes

integrating the attention mechanism, which might not be effectively harmonizing

with the U-Net framework. It’s possible that specific modulation to hyperparame-

ters, such as size and depth of filters, are necessary. Additionally, it could be less

responsive to the complexities of the BraTS2020 dataset.

We improved the spatial attention mechanism of CCSA by increasing the num-

ber of feature maps at each corresponding layer, resulting in CCSAv1. This ad-

justment has amplified the feature representation and strengthened the network’s

discriminating abilities with minimal changes to the network trainable parame-

ters [Roy et al. (2018)]. In Table 3.1, a contrast between CCSA and CCSAv1

across various model types are presented with consistent coloring (excluding the

first two rows). The CCSAv1 model showcases notable improvements over other

attention models (every permutation of orthogonal planar and triplanar) while in-

curring only a slight rise in the parameter count. It only has 0.342;M additional

parameters compared to the previous iteration, CCSA. This further validates the

robustness of the CCSAv1 model.

The Triplanar Ensemble of CCSAv1, comprising axial, sagittal, and coronal

models with the CCSAv1 attention mechanism, has achieved notable performance.

The performance improvement observed in the CCSAv1 model can be determined

by its triplanar nature, which grants access to some depth insights. The model

types and names highlighted in red indicate the top-performing models in our ap-

proach. Further, the super ensemble model with (CA, SCSA, CCSAv1) attention

blocks has Dice-score 0.704, 0.875, 0.785 for ET, WT, and TC with total param-

eters 93.50 M which is 1.7× and 2× lesser than top ranking models shown in first

two rows of the Table 3.1.
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Furthermore, applying postprocessing techniques using the connected com-

ponents algorithm effectively eliminates false positive labels, improving 0.009 in

the DSC for ET lesion segmentation (ET: 0.713). This improvement is supported

by the HD, which calculates the dissimilarity between predicted and actual seg-

mented boundaries. Notably, the Super ensemble-pp* model exhibits the lowest

HD following post-processing (pp), emphasized in bold font. While CCSAv1 as

a standalone model has made substantial contributions across all combinations,

the Super-ensemble model* (incorporating CCSAv1) 1 exhibits only marginal im-

provement when compared to the Super-ensemble model (utilizing CCSA). For in-

stance, the enhancement for ET is minimal, and the DSC remains unchanged for

WT and TC. This phenomenon could be attributed to the averaging of probabili-

ties obtained from multiple models, which tends to moderate significant changes

from any particular model.

Segmentation observations on training data

The training outcomes of the highest-performing models, encompassing triplanar

and Super-ensemble configurations, on a set of 75 randomly selected samples are

presented in Table 3.2. The triplanar ensemble models, with approximately 31

million parameters, can accurately predict segmentation labels, achieving DSCs

of 0.727 for ET, 0.892 for WT, and 0.829 for TC. In contrast, the Super-ensemble

model with CCSAv1 demonstrates improvements in lesion segmentation across all

categories. Furthermore, post-processing of the segmentation outcomes derived

from this Super-ensemble model results in improved DSCs and HD metrics across

all lesion types, as highlighted in bold font.

1modified model is shown by *
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Figure 3.10 visually represents the performance of the Super ensemble-pp

(performing post-processing), illustrating challenges encountered in distinguish-

ing extremely complex tumor legions, as illustrated in Figure 3.10 (g)-(i). Nonethe-

less, the model demonstrates precise segmentation of other tumor lesions. This

visual evaluation offers a valuable understanding of the merits and constraints of

the model in accurately segmenting tumor lesions.

Figure 3.10. (a), (b), and (c) depict the orthogonal views, namely axial, sagittal,
and coronal, of the FLAIR image, respectively. Correspondingly, (d), (e), and (f)
represent the corresponding actual segmentation labels. Similarly, (g), (h), and
(i) show the corresponding predicted labels. In this representation, the WT is
indicated by light-brown, white, and dark-brown colors, the ET lesions are rep-
resented by white, and the TC is depicted by a combination of dark brown and
white. Upon observation of slices presented in (a), (b), and (c), it is evident that
the axial slice contains the most detailed anatomical information. In contrast, the
coronal slice provides the least [Rajput et al. (2023b)].
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The comparative analysis of computation and memory requirements between

proposed models and Native U-Net are shown in Table 3.3. We can observe

marginal differences among the proposed methods and between the proposed

method and the Native U-Net. Despite a slight increase in memory and com-

putation requirements of the proposed triplanar model, segmentation performance

has improved significantly.

TABLE 3.3
Comparative analysis of computation and memory requirements between pro-
posed models and Native U-Net.

CA CCSAv1 SCSA Native U-Net

Trainable parameters 10.24 M 10.589 M 10.333 M 7.69 M

Training time per
epoch

1290±5
seconds

1302±5
seconds

1302±5
seconds

1260±5
seconds

Memory size 15680 MB 15684 MB 15691 MB 15676 MB

Inference time per
sample

1 second 1 second 1 second 1 second

Finally, we evaluate the proposed network against the leading 2D or 3D seg-

mentation methods of the BraTS2020 challenge in Table 3.4. The proposed net-

work performs better in accurately segmenting respective lesions indicated by the

highlighted regions. The methods presented here outperform several 2D and 3D

models, as shown in Table 3.4. This emphasizes the network’s effectiveness in

addressing complexities associated with lesions and delivering more reliable and

accurate results.
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TABLE 3.4
Performance evaluation on the validation (BraTS2020) dataset, the proposed net-
work is assessed against the leading BTS networks from the challenge. The first
row presents the details of the proposed network, with subsequent comparison
results highlighting its superior performance. Specifically, the proposed network
surpasses other networks, indicated by cells highlighted in yellow, with the best
outcomes emphasized in bold.

DSC HD Mean sensi-
tivity

Mean speci-
ficity

Model name Model Type ET WT TC ET WT TC ET, WT, TC ET, WT, TC

Proposed method 2D Ensemble
U-Net

0.713 0.873 0.778 31.563 6.347 13.274 0.796 0.999

[Messaoudi et al.
(2021)]

3D-U-Net 0.654 0.841 0.680 NA NA NA NA NA

[Ma et al. (2021)] 2D-U-Net 0.704 0.879 0.773 NA NA NA NA NA

[M. J. Ali et al.
(2021a)]

2D, 3D En-
semble U-Net

0.748 0.871 0.748 3.929 9.428 10.090 0.780 0.996

[Agravat & Raval
(2021)]

3D-U-Net 0.763 0.873 0.753 27.704 07.038 10.873 0.809 0.999

[J. H. Xu et al.
(2021)]

2D-U-Net 0.673 0.861 0.704 40.608 7.942 15.750 NA NA

[Soltaninejad et al.
(2021)]

3D-U-Net 0.660 0.870 0.800 47.330 6.910 7.800 0.773 1

[Colman et al.
(2021)]

2D-U-Net 0.676 0.886 0.672 47.620 12.110 15.740 NA NA

[Ballestar & Vila-
plana (2021)]

3D-U-Net 0.720 0.840 0.790 37.970 10.930 12.240 NA NA

[Tarasiewicz et al.
(2021)]

2D Ensemble
U-Net

0.703 0.888 0.749 40.132 4.552 10.678 0.791 0.999

[Wacker et al.
(2019)]

2D U-Net 0.685 0.878 0.753 40.385 7.936 17.675 NA NA

[McHugh et al.
(2021)]

2D U-Net 0.712 0.881 0.789 40.600 6.720 10.200 NA NA

Ablation study

We carried out an ablation to study the impact of convolution layer kernel size k

at the convolution block in yellow and upsample block in orange in Figure 3.5.

At the preliminary level, we experiment with 3× 3 and 2× 2 kernel size (k). A

2×2 kernel size increases the performance metrics and comparatively reduces the

number of parameters. For a coronal planar network with a CA attention module

with k = 3, the DSC is 0.647 (ET), 0.823 (WT), and 0.734 (TC). Whereas for
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CSCA and SSCA, it is 0.614 (ET), 0.798 (WT), 0.710 (TC), and 0.548 (ET),

0.748 (WT), and 0.622 (TC), respectively. These results can be compared with

kernel size k = 2 as shown in 6− 8th rows of Table 3.1, showing a significant

increase in scores with k = 2.

Similarly, we experiment with a reduction ratio of 16 and 8 in the dense layer

of the CA network. The segmentation results are better with a (r = 8) reduction

ratio. Therefore, we also keep r = 8 in all the channel attention modules used

in CCSA and SCSA networks. Further, in the SCSA block, for implementing

spatial attention, we replace k = 7×7 kernel size as shown in Equation 3.7, with

k = 3×3 to balance parameter numbers, but the model’s performance deteriorates

to 0.537 (ET), 0.771 (WT) 0.608 (TC). For an axial planar model with k = 3×3

in the SCSA attention block, the DSC is 0.670 (ET), 0.866 (WT), and 0.760 (TC).

These results can be compared with kernel size k = 7 shown in Table 3.1 (5th row),

showing a significant increase in scores with k = 7.

3.1.5 Limitations

The model exhibits several limitations. Firstly, it faces challenges in effectively

eliminating specific false positive tumor lesions. Secondly, the triplanar model

does not effectively utilize the depth information of an image, thereby restricting

its differentiating capacity. Finally, the considerable counts of trainable parame-

ters in the proposed network pose a challenge for real-time segmentation of brain

tumors on edge devices. Advanced edge devices like NVIDIA’s Jetson embedded

GPUs have memories in the range from 2 GB to 32 GB [Gealy & George (2022)].

However, on these systems, the memory is shared between the CPU cores and the

GPU. Therefore, accommodating a larger model for precise and reliable real-time

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 69



Chapter 3. A Proposed Holistic Approach to Efficient Brain Tumor Segmentation and Overall Survival Prediction

segmentation on these edge devices is challenging and requires rigorous model

optimization (in terms of pruning and bit precision) [O. Ali et al. (2022)].

3.1.6 Conclusions and future scope

This thesis explores a triplanar-ensemble network with a segmenting performance

similar to a 3D model. Also, this approach is influenced by the fact that most large

publicly available medical datasets consist of 2D images. Therefore, we study 2D

networks and optimize them (2.5D) to improve their performance metrics. The

proposed network uses three 2D UNet networks to generate axial, coronal, and

sagittal slice predictions. These predictions are subsequently integrated into a

final multiple-view prediction, which enables partial capturing of spatial infor-

mation in the depth dimension. Additionally, infusing attention mechanisms into

the network causes the inclusion of relevant information from channel and spatial

dimensions, thereby suppressing unnecessary information, which improves the

discriminating power of the segmentation model.

We can observe from this study that an ensemble of the triplanar network based

on UNet provides robust BTS, requires fewer parameters, and thus requires less

computational memory. The proposed approach with limited parameters (almost

3× lesser) demonstrates comparable performance to a 3D model, making it suit-

able for brain tumor segmentation in resource-limited settings. Additionally, we

observe that training models across multiple planes enable them to learn and dis-

criminate between different tumor lesions. Models trained using axial and sagit-

tal planar views can segment tumor lesions more robustly than those trained on

coronal planar view. Combining ensembles of these models further enhances the
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overall segmentation performance. Likewise, we observe that incorporating chan-

nel and spatial attention into the network sequentially enables the model to learn

significant features from channel and spatial dimensions effectively. Moreover,

incorporating channel attention alone into the network also increases the model’s

discriminating capabilities. In other words, SCSA and CA attention-based models

have shown better segmenting performance than CCSA.

In summary, optimizing 2D models using the attention-based triplanar ap-

proach can compete with 3D models with limited complexity and computation

requirements. These attributes can be extremely useful when implemented in

resource-constrained environments or integrated with legacy systems where datasets

are in 2D images. The proposed 2D network has shown comparable results to the

top-performing BraTS2020 models. However, the performance and parameter

numbers can be further optimized.

Future work can focus on further enhancing and refining the proposed method-

ology. This may involve incorporating additional post-processing methods, such

as replacing ET lesions with necrotic tissue according to particular cutoff values

determined through experimental analysis. Moreover, investigating the incorpo-

ration of diverse 3D, 2.5D, and 2D U-Net architectures shows potential for im-

proving segmentation accuracy. Also, integrating functional modalities, including

Magnetic resonance spectroscopic imaging (MRSI), Diffusion-weighted imaging

(DWI), and perfusion-weighted MRI, can provide additional biological under-

standing. Combining structural information from native MRI scans and biological

inference from advanced MRI scans can enhance the segmentation precision of

brain tumors.
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3.2 Methodologies for SD prediction

As previously mentioned, predicting survival in Glioblastoma patients is pivotal

for guiding the optimal treatment and care strategies selection. This prediction

relies on factors such as BTS, image characteristics, acquisition protocols, quali-

tative feature extractions, and provided clinical information. Furthermore, as pre-

viously discussed, our initial focus involved the development of 3D BTS meth-

ods and predicting SD within a resource-constrained environment. This is to

be followed by triplanar BTS network development and SD prediction to further

progress toward our objective.

We work on four variants of the triplanar BTS network, extract features, per-

form feature selection, and work on a diverse set of predictor models to predict the

SD of GBM patients. The accuracy of predicting SD also relies on both the input

features and the particular ML model employed for the task. The dimensionality

of the dataset can be reduced by extracting pertinent features from raw data or

selecting the most informative ones. This process not only simplifies the model

but also mitigates the risk of overfitting and minimizes computational complex-

ity, which can arise due to the curse of dimensionality. The subsequent sections

elaborate on the crucial components for predicting SD.

3.2.1 Feature extraction

The feature extraction component comprises both image-based and radiomics-

based features [Van Griethuysen et al. (2017)] extracted from input FLAIR and

segmentation. as detailed in Table 3.5. Image-based features are directly ex-
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tracted from the images. In contrast, radiomics features are extracted from the

Python-based radiomics tools [Van Griethuysen et al. (2017)]. Radiomics is a

prominently discussed subject in nuclear medicine and general medical imaging.

Despite lacking a precise definition, it primarily endeavors to derive quantitative

and ideally reproducible information from the imaging scans. This encompasses

intricate patterns that prove challenging for human eye recognition or quantifica-

tion [Mayerhoefer et al. (2020); Gillies et al. (2016)].

Radiomics can be utilized to capture characteristics of tissues and lesions, in-

cluding shape and heterogeneity. Serial imaging enables observing changes, such

as those occurring during treatment or monitoring. Secondly, radiomic data is

extractable, indicating that within adequately extensive datasets, it can uncover

previously unidentified markers and patterns related to the evolution, progression,

and response to treatment in diseases [Mayerhoefer et al. (2020)]. In oncology, the

evaluation of tissue heterogeneity holds specific significance. Genomic analyses

have revealed that the extent of tumor heterogeneity serves as a prognostic factor

for survival and presents a challenge to effective cancer control [Mayerhoefer et

al. (2020); F. Yang et al. (2017); Burrell et al. (2013); J. Liu et al. (2018)].

In the initial phase, features are extracted from the ground truth to train the

predictor model. These features are subsequently validated using the segmented

results obtained from the 3D BTS network, considering that ground truth informa-

tion is unavailable in the validation2020 dataset. Subsequently, the segmentation

results from the triplanar network are utilized for training and validating the SD

prediction. We consider four variants of the BTS network and extract four sets

of the same features for training the predictor models. Whereas for validation,

we validate each variant across all the variants. The variants of feature extraction
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from the triplanar networks are:

• Variant 1: No BTS network (used BraTS ground-truth for SD prediction).

• Variant 2: Super-ensemble using CA, CCSA, SCSA attention mechanism.

• Variant 3: Super-ensemble using CA, CCSAv1, SCSA attention mecha-

nism.

• Variant 4: Variant 3 with postprocessing.

TABLE 3.5
The feature set comprises 1264 features, with 1225 being radiomics-based and 39
being image-based [Rajput et al. (2023a)].

Image-based features

Shape-based fea-
tures (27)

Volume of tumor lesions (TLs), the Surface area of TLs,
the area-to-volume ratio of TLs, amount of tumor, pro-
portion of TLs, proportion ratio between each TLs.

Location-based
features (12)

Centroid of TLs, the distance between the center of TLs
and the brain’s center.

Radiomics-based features

Shape features (13) Elongation, major axis length, minor axis length, mesh
volume, maximum diameter row, maximum diameter
column, surface area, flatness, sphericity, and surface
volume ratio.

First-order features
(144)

Energy of an image, maximum intensity, minimum in-
tensity, mean intensity, median intensity, entropy, abso-
lute deviation, interquartile range, variance, skewness,
percentile, kurtosis, and uniformity.

Gray-level features
(1068)

Neighboring gray-tone difference matrix (NGTDM),
Gray-level co-occurrence matrix (GLCM), Gray-
level size-zone (GLSZ), Gray-level run-length ma-
trix (GLRLM), and Gray-level dependence matrix
(GLDM).

Note: The parentheses numbers indicate the extracted features’ quantity.
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In this context, image-based features are derived by analyzing the tumor’s lo-

cation and shape. In contrast, radiomics-based features are obtained by examining

both necrotic and non-enhanced tumor lesions by applying wavelet and Laplacian

of Gaussian (LoG) filters across varying σ values between 1 to 5. The lower σ

value focuses on detailed textures, and the higher σ highlights global textures

features. The wavelet filters denoise the images and capture spatial and global

signals [Singh & Urooj (2015)]. The LoG filter detects the centers of regions and

estimates their size, shape, and location [Kong et al. (2013)]. As a result, we ac-

quire a combined set of 1264 features. Additionally, we incorporate clinical data,

specifically patients’ ages, as part of our feature set. Hence, a total of 1265 fea-

tures are considered for performance assessment. Some features may duplicate

information or fail to contribute to the prediction, thus potentially reducing the

performance of ML models by impacting both the time taken for execution (due

to high dimensionality) and the performance [Kira & Rendell (1992)]. Therefore,

a feature selection procedure is crucial.

3.2.2 Feature subset selection

The basic aim of feature selection methods is to eradicate irrelevant or duplicated

features. In this study, we employ Recursive feature elimination (RFE) [Pedregosa

et al. (2012)] and Permutation importance (PI) [MIT & Lopuhin (1965)] as fea-

ture selection methods. RFE employs a backward feature selection technique to

identify the optimal feature set iteratively. Initially, it includes all features to train

the model and then evaluates the importance of each feature. Subsequently, it

eliminates the least important features and re-trains the model. This process is re-
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peated, ranking features based on their significance and removing the least signif-

icant ones until the optimal feature subset is achieved. The details of the dominant

features selected by RFE are provided in Table 1 of the Supplementary section.

On the other hand, PI is a model inspection technique that evaluates the impact

of individual features on the performance of a trained model. It determines the

impact on the model’s performance by randomly perturbing the desirable feature’s

value. A significant reduction in performance following rearrangement indicates

the feature’s importance, while minimal impact suggests its lower significance.

The steps to calculate PI are shown in algorithm 1.

From PI, we obtain the weight of the features based on their significance which

ranges from -35 to 1309.95. Typically, dominant features are assigned higher

weights compared to others. A zero or negative weight indicates that the feature

does not contribute to the prediction. Therefore, we have chosen 100 as the opti-

mal threshold to eliminate small or negative values prompting us to exclude such

features and reduce the feature set to 180. Further, these features undergo addi-

tional analysis utilizing the SRC, employing an absolute threshold value of 0.5.

As a result, we eliminated redundant features, reducing the feature set to 29.

The process for feature selection proceeds as outlined below:

• We filter out features based on their weights generated through PI, repre-

senting their influence on the outcome. Features with a weight below the

threshold of 100 are excluded, resulting in 180 features.

• Additionally, we further refine the selection by identifying weaker features

among the initial 180 using the SRC and a sorting procedure. Here’s how

it works: (a) We iterate over each feature within the set of 180 features,
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beginning with the feature with the lowest PI weight. For each feature, we

compute its SRC with the remaining 179 features. (b) Features with an SRC

value below 0.5 are selected. (c) Based on this selected feature, we utilize

the feature with the highest PI weight value to substitute for the feature with

the lowest PI weight chosen in step (a). This iterative procedure persists for

every feature within the set of 180 features, executing the loop 179 times.

Ultimately, we pinpoint 29 predominant features out of 180 initial features

having lesser correlations.

Brief details of the 29 chosen predominant features employing PI are presented

in the Supplementary Table 2.

Algorithm 1 PI Algorithm [Rajput et al. (2023a)]:
Input: Trained model denoted as m on the Dataset D
Compute: The metric S of the model m on dataset D, such as the R2 metric
for a regression model.
for each feature j : do

for each repetition r in R: do
Randomly alter column j of Dataset D to create a modified version of

the dataset with additional noise, for instance, D̂r, j.

Calculate the performance measure sr, j of trained-model m on the
noisy dataset variant D̂r, j.

end for
Measure the significance I of each feature j in the following manner:
I j = s− 1

r ∑
r
r=1 sr, j

end for

3.2.3 Predictor models

As detailed in Section 3.2.1, during the initial phase, the SD regressor model

undergoes training utilizing features extracted from the actual segmentation. Sub-
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sequently, the validation set is employed to validate the results, utilizing 3D BTS

segmentation outcomes. We employed the Random Forest Regressor (RFR) model

for this task. RFR [Fernáandez-Delgado et al. (2014)] employs ensemble learning,

with Decision trees (DT) serving as the fundamental building blocks. Each deci-

sion tree is built using randomly selected samples from the training set, known

as “Random Forest”. This method is widely used as it has been proven accurate

and robust [Fernáandez-Delgado et al. (2014)] across multiple complex problems,

including SD prediction [Puybareau et al. (2019); Agravat & Raval (2019)]. The

RFR model often outperforms other models because it reduces variability by aver-

aging predictions from each tree. Furthermore, randomization during tree growth

and splitting aids in preventing overfitting. [Ishwaran et al. (2008)]. Hence, the

RFR model is robust for predicting brain tumor patients’ survival [Rajput et al.

(2021)]. A five-fold cross-validation technique is employed to train the RFR

model. Additionally, the model’s hyperparameters undergo fine-tuning using the

grid search technique. The model’s hyper-tuned parameters are maximum tree

depth, count of trees within the forest, number of features to consider at each

split, and the minimum sample count needed at an internal node for a split.

Additionally, as part of the ablation study, we used other widely used BraTS

predictor models such as ANN, Linear regressor, and Gradient boosting regressor

(GBR). All these models are employed using the best-performing approach to the

BraTS challenges.

Subsequently, in the second phase, as mentioned in section 3.2.1, we extract

these features from Variants 1 to 4 (enlisted in section 3.2.1) and employ them

as four separate training sets. For the validation set, ground truth is not publicly

available. Consequently, we extract features from the segmented results of the
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last three variants (referred to as Val-Variant2, Val-Variant2, and Val-variant3)

and employ them to predict SD. Each of these training variants is assessed across

all the variants of the validation feature sets. This approach enables us to pinpoint

the model that excels at accurately predicting SD and evaluate if the enhanced seg-

mented results contribute positively to predicting SD days. Additionally, analyz-

ing features set within these variants aids in identifying their behavioral patterns

and answering how robust these features are.

We train the RFR and Extra random forest (Extra RF) regression models us-

ing this feature set. Both these models are based on ensemble learning principles.

However, Extra RF splits nodes randomly and prohibits sample replacement dur-

ing tree-building. Allowing random splits increases the bias of individual trees but

decreases their variance. This can lead to a more stable and reliable model, espe-

cially when dealing with noisy or high-dimensional data. Further, to optimize the

model’s performance, we conduct hyperparameter tuning using grid search tech-

niques. The fine-tuned hyperparameters include the maximum count of features at

each split, maximum depth of the tree, count of trees within the forest, the minimal

count of sample needed at a leaf node at a splitting point, and stochastic nature

of bootstrapping samples.

3.2.4 Results and discussions

The BraTS evaluation platform [Spyridon (Spyros) (2021)] evaluates the predictor

models. Furthermore, we utilized the top-performing models from the BraTS-

2020 challenge as benchmarks to assess our results.
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Correlation study of dominant features

In order to understand the relationship among features, we plot the correlation

matrix of the feature sets as shown in Figure 3.11 from the initial phase of the

study (3D segmentation network) and Figure 3.12 from the second phase of the

study (triplanar segmentation network). (Refer to Supplementary Table 3 for the

annotation of the features).

+1

0

-1

Figure 3.11. Correlation matrix among the features obtained through the PI fea-
ture selection technique. The frequency chart on the right side illustrates the fre-
quency and range of correlations in the correlation matrix. (Refer to Supplemen-
tary Table 2 for features notation.) [Rajput et al. (2023a)].
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The correlation between features serves as an indicator of whether they offer

redundant or distinctive information. Higher absolute correlation values imply re-

dundancy within the feature set, potentially hindering the model’s performance by

promoting overfitting or diminishing its generalization ability. Conversely, lower

correlations suggest that features are uncorrelated and carry unique insights. This

unique information can enhance the model’s performance by providing diverse

perspectives, improving its ability to generalize and make accurate predictions.

A positive correlation between features means if one feature increases, the other

tends to increase, whereas a negative correlation between features means that if

one feature increases, the other tends to decrease.

In Figure 3.11, the correlation plot illustrates that most features exhibit low

correlation, indicating that they capture distinct phenotypic properties. Moreover,

the histogram on the right confirms this finding by illustrating that most selected

features exhibit correlation coefficients between -0.13 and +0.17, indicating their

uncorrelated nature. This provides further validation for our selected features.

Similarly, Figure 3.12 displays the correlation plot for Variant 4, the best-

performing model. The plot demonstrates that most feature correlations fall within

the -0.25 to +0.25 correlation values range. This indicates that these features ex-

hibit low correlation, suggesting high independence. Such independence among

features enables them to capture distinct phenotypic information from tumor le-

sions effectively. By leveraging these uncorrelated features, our model can pro-

vide a more nuanced and comprehensive prediction of SD for glioblastoma pa-

tients, potentially improving prognostic accuracy.
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Figure 3.12. Correlation map among the features derived from one of the best-
performing variants (Variant4) (Refer Supplementary Table 3 for features annota-
tion) [Rajput, Kapdi, Raval, et al. (2024)].

Results of the SD predictor models

Table 3.6 illustrates the comparison between our SD prediction results obtained

during the initial phase of the study and the top-performing methods of the BraTS2020

challenge.
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TABLE 3.6
Performance Comparisons of proposed predictor method with top-ranking meth-
ods on the training and validation datasets of BraTS2020. The highlighted method
denotes the most effective model from the BraTS2020 challenge. Where UA de-
notes Unavailable.

Dataset Method Accuracy MSE medianSE stdSE SRC

Training

[McKinley et al. (2020)] UA UA UA UA UA
[Asenjo & Solı́s (2021)] 0.822 55499.71 11351.02 147319.00 0.833
[Bommineni (2021)] UA UA UA UA UA
[M. J. Ali et al. (2021b)] 0.641 62305.61 05745.64 200788.00 0.632
Proposed Method 0.538 60668.61 16037.10 125873.00 0.754

Validation

McKinley et al. (2020) 0.414 098704.66 36100.00 152176.00 0.253
[Asenjo & Solı́s (2021)] 0.520 122515.80 70305.26 157674.00 0.130
[Bommineni (2021)] 0.379 093859.54 67348.26 102092.00 0.280
[M. J. Ali et al. (2021b)] 0.483 105079.40 37004.93 146376.00 0.134
Proposed Method 0.552 79826.24 14148.89 148288.00 0.711

A robust approach should demonstrate proficiency across various performance

metrics besides accuracy, as each metric evaluates the models based on differ-

ent criteria. Hence, we compare the proposed method with best-ranking models

[McKinley et al. (2020)] and report the improvement as computed using Equation

3.8. Here the percentage enhancement φ for each performance measure x of our

proposed method P is determined by:

φ(x) =
Proposed model(P)−Best rankingmodel (S)

Best rankingmodel (S)
×100 (3.8)

As a result, the SD outcomes of the proposed method demonstrate a 33.33%

enhancement in accuracy. There is a 19.13% enhancement in MSE, which eval-

uates the variability around the fitted regressor model and indicates the disparity

between the actual and predicted values. However, it is responsive to the outliers

[Minoru (2021)]. For medianSE, there is a 60.80% enhancement, which employs

the median value of the residuals and remains resilient to outliers. We can observe
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a 2.62% enhancement in stdSE and a 181.03% enhancement in the SRC measures

often used to measure the relation between the therapy response and the survival

days [Molina et al. (2019)]. The results obtained across different metrics demon-

strate the robustness of the prediction [Minoru (2021)]. As illustrated in Table 3.6,

our model consistently excels across all established measures utilized for survival

prediction.

Following the initial phase of the study, the subsequent stage presents out-

comes derived from the variants of the triplanar network as detailed in Table 3.7.

The results are based on RFR and ExtraRF regressor models from the BraTS2020

training and validation datasets. Further, performance comparisons with various

state-of-the-art are shown in Table 3.8. We can observe that the RFR model, which

is trained using the feature set generated from Variant1 (actual truth segmenta-

tion), achieves the best accuracy on the training set (0.590) and the validation

set (0.607) (specifically, Val-Variant4). Likewise, training using Val-Variant2 fea-

tures, the RFR model demonstrates strong performance with an accuracy of 0.552

on the validation set (Variant2).

Similar observation can be made for the ExtraRF model trained on Variant1,

which achieves the best accuracy on the training set, whereas trained on Variant2,

which demonstrates strong performance on validation set Val-Variant4. Notably,

the ExtraRF model trained on Variant2 stands out with the lowest medianSE er-

ror among all the variants. Further, we observe that Variant4 feature set exhib-

ited strong performance across all variants of the validation set when trained us-

ing both regressor models. Various other performance metrics substantiate this

enhancement in performance. This particular feature set has outperformed the

Variant1 feature set, which is derived from ground truth regarding performance
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measures, including MSE, medianSE, and stdSE. When considering SRC in a

broader context, where its average value is 0.50, it becomes clear that the feature

combination exhibits robustness in accurately predicting SD. We can observe that

both the regressor models have shown consistent performance. However, the Ex-

traRF model performs better than the RFR model in terms of medianSE. Further,

both the RFR and ExtraRF models trained on Variant4 obtained the second-best

accuracy on all the validation sets.
TABLE 3.7
Performance evaluation on BraTS2020 training and validation datasets. The re-
sults of two models (RFR and ExtraRF) with four variants are shown in this figure.
Boldface numbers indicate the best outcomes. Where MSE= mean squared error,
medianSE = median squared error, stdSE = standard deviation squared error, and
SRC = Spearman ranking coefficient.

RFR-Variant1 RFR-Variant2

Dataset Accuracy MSE medianSE stdSE SRC Accuracy MSE medianSE stdSE SRC
Training 0.590 59961.29 14329.44 130263.47 0.75 0.494 66597.44 20926.74 154478.65 0.79
Val-Variant2 0.517 83517.04 26053.75 141127.31 0.46 0.552 84889.59 27419.79 145913.19 0.38
Val-variant3 0.517 81758.66 33743.34 143279.04 0.50 0.379 82299.18 34042.45 140221.36 0.40
Val-Variant4 0.607 84583.28 25863.77 149488.19 0.52 0.536 88256.21 32317.57 152391.84 0.41

RFR-Variant3 RFR-Variant4

Training 0.420 70848.61 19095.99 164996.23 0.73 0.540 52490.06 13735.40 110568.72 0.84
Val-Variant2 0.517 89247.45 30042.56 166046.05 0.482 0.586 76529.43 41402.78 130978.47 0.52
Val-Variant3 0.517 88071.62 35003.74 161756.57 0.46 0.552 78062.18 34680.22 132088.99 0.54
Val-Variant4 0.500 96315.14 29462.49 182386.75 0.38 0.571 82070.60 40678.11 138345.10 0.47

Extra RF-Variant1 Extra RF-Variant2

Training 0.573 72497.92 21034.61 145370.679 0.64 0.513 84720.58 26284.83 164973.83 0.56
Val-Variant2 0.448 88824.51 27677.49 147216.69 0.35 0.517 82763.34 20467.30 132469.19 0.38
Val-Variant3 0.379 88509.32 26823.04 147955.13 0.37 0.448 82531.81 24575.59 130747.95 0.36
Val-Variant4 0.483 87686.49 24668.79 150750.72 0.37 0.571 87835.71 19673.74 139329.53 0.35

Extra RF-Variant3 Extra RF-Variant4

Training 0.509 70212.48 26440.58 130157.39 0.60 0.504 59927.38 20101.86 107835.95 0.72
Val-Variant2 0.517 84665.76 25455.24 133754.20 0.36 0.586 76529.43 41402.78 130978.47 0.52
Val-Variant3 0.483 83751.74 30857.99 131561.07 0.36 0.552 78062.18 34680.22 132088.99 0.54
Val-Variant4 0.536 87761.17 24263.52 139863.25 0.35 0.571 82070.60 40678.11 138345.10 0.47
a Validation results from the BraTS2020 challenge online evaluation portal:
https://ipp.cbica.upenn.edu/

Lastly, we have compared our best-performing model on all the performance

metrics with the top-ranking and leading models in Table 3.8. The bold-faced text

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 85



Chapter 3. A Proposed Holistic Approach to Efficient Brain Tumor Segmentation and Overall Survival Prediction

shows the best results. Our proposed method has surpassed the leading approach

in both accuracy and MSE. However, in terms of SRC (another vital metric), it

ranks as the second-best performer.

TABLE 3.8
Performance comparison between proposed and best-performing methods on
training and validation brats2020 datasets. The data was sourced from the val-
idation2020 Leaderboard [Spyridon (Spyros) (2021)]. The bold-faced text shows
the best results. NA: Not-Available.

Dataset Method Accuracy MSE medianSE stdSE SRC

Training

(McKinley et al., 2020) NA NA NA NA NA
(Asenjo & Solı́s, 2021) 0.822 55499.71 11351.02 147319.00 0.833
(Bommineni, 2021) NA NA NA NA NA
(M. J. Ali et al., 2021b) 0.641 62305.61 05745.64 200788.00 0.632
(Rajput et al., 2023a) 0.538 60668.61 16037.10 125873.00 0.754
Proposed (ExtraRF variant4) 0.504 59927.38 20101.86 107835.95 0.725

Validation

(McKinley et al., 2020) 0.414 098704.66 36100.00 152176.00 0.253
(Asenjo & Solı́s, 2021) 0.520 122515.80 70305.26 157674.00 0.130
(Bommineni, 2021) 0.379 093859.54 67348.26 102092.00 0.280
(M. J. Ali et al., 2021b) 0.483 105079.40 37004.93 146376.00 0.134
(Rajput et al., 2023a) 0.552 79826.24 14148.89 148288.00 0.711
Proposed (ExtraRF variant4) 0.586 76529.43 41402.78 130978.47 0.525

3.2.5 Conclusions and future scope

In this study, we introduce a holistic approach for predicting SD. We determine

29 prominent features crucial for accurate SD prediction through comprehensive

analysis. Our validation of these features through correlation matrix and his-

togram visualization confirms that each carries unique valuable information for

precise prediction. Additionally, ensemble-based models with proper fine-tuning

have improved SD prediction with limited samples, signifying their robust nature

in minimizing overfitting. The resulting trained model demonstrates superior per-

formance across multiple metrics compared to existing methods. Notably, it out-
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performs the best-performing methods from the BraTS-2020 competition, provid-

ing more accurate predictions. This highlights the effectiveness of our proposed

approach and emphasizes its potential for advancing SD prediction in clinical set-

tings.

Further, as future work, clinical data such as age, gender, race, Karnofsky

performance score (KPS) [Rajput, Kapdi, Raval, et al. (2024)], and treatment in-

formation can be obtained from the TCGA glioblastoma project 2. This clinical

information has proven to be an essential variable in the prognosis of gliomas.

Combining this clinical information with our proposed feature set can further val-

idate its effectiveness.

2https://www.cancer.gov/tcga
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Interpretability in SD Models

In recent decades, ML models have found widespread use across many fields,

including medicine, military operations, social media, education, industry, trans-

portation, trading, and smart devices. Their widespread adoption is due to their

exceptional success and effectiveness. These models are adept at handling large

volumes of data and discovering complex patterns, leading to significant advance-

ments. However, despite their remarkable success, integrating these models into

real-time applications is limited by the challenge of comprehending their inter-

nal mechanisms and providing explanations for the decisions made by these ML

models. Gaining insight into the decision-making process of AI or ML mod-

els is highly important, especially in the medical field, where the transparency

of these models is essential for establishing trust between machine and clinical

experts. Typically, these models are challenging to understand due to their non-

linear nature. Therefore, in this study, the primary focus involves conducting a

comprehensive analysis of feature characteristics on a global scale and at the in-

dividual sample level for SD prediction. For achieving this objective, post-hoc
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interpretable methods, such as SHAP [Lundberg & Lee (2017)], PDP [Friedman

(2001)] and ALE [Apley & Zhu (2020)] for generating global visual explanations.

Additionally, we utilized SHAP [Lundberg & Lee (2017)], and LIME [Ribeiro et

al. (2016a)], were employed to derive local visual explanations.

Post-hoc interpretability methods are approaches utilized following the train-

ing of an ML model aimed at aiding in comprehending and interpreting its predic-

tions. These methods clarify the model’s decision-making process without modi-

fying its architecture or training procedure [Molnar (2021)]. The employed post-

hoc interpretable methods are listed below:

• Deriving global explanation - SHAP, PDP, and ALE

• Deriving local explanation - SHAP and LIME

Moreover, given the widespread use of radiomic features, particularly notable

in our study, and their applicability in medical image-based analyses, radiomics

often fall short of directly inferring tumor malignancy due to their intricate con-

nection with genetic factors. Addressing this gap involves expanding the interpre-

tation of radiomic features by correlating them with gene expression data. This

approach enables validation of the relevance of radiomic features and the discov-

ery of potential biomarkers for predicting tumor behavior, prognosis, or treatment

response, thus enhancing clinical decision-making.
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4.1 Foundational concepts of employed interpreta-

tion techniques

The primary goal of the SHAP method is to assess the influence of individual

features on the prediction of a given sample. The SHAP value of any feature

represents the average marginal contribution of that feature to the value of the

antecedent set, considering all possible arrangements of the feature set. It can be

defined in the equation 4.1 [Rozemberczki et al. (2022)].

(Φ j) =
1

| Π(N) | ∑
π ε Π(N)

marginal contribution of jth feature
in a coalition π︷ ︸︸ ︷

(v(P̂π
j ∪ j)− (v(P̂j)) (4.1)

where (Φ j) represents the SHAP-value of the desirable feature j, Π(N) signi-

fies the potential coalitions of all features, π denotes a specific coalition, c stands

for the contribution of feature(s), (P̂π
j ∪ j) denotes the predecessor set of feature

j in a particular coalition, which includes the j feature, while P̂j represents the

predecessor set of feature j in a particular coalition, excluding the j feature (Ra-

jput et al., 2023a). For instance, if π = {X ,Y,Z}, j = Y and c{X} = 8, c{Y} =

10, c{Z} = 9, c{X ,Y} = 18, c{X ,Z} = 20, c{Y,Z} = 22 and c{A,Y,Z} = 25,

whereas the feasible predecessor sets in this instance) within a specific coalition

π = {A,Y,Z} :{φ ,X} and marginal contribution (MC) of j(=Y) is computed as:

c{A,Y}− c{X} = 20−8 = 12. Moreover, computing the MC of feature j across

all possible coalitions and then averaging will yield the SHAP value (ΦY ) of fea-

ture Y . In essence, this demonstrates the influence of each feature on predicting
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SD. It facilitates understanding the overall behavior of the model by integrating

each sample’s explanation. Refer to Supplementary Table 4 for a more detailed

interpretation of this instance. The steps for computing the SHAP value of the

desirable feature are presented in Algorithm 2.

The PDP illustrates the overall impact of the desirable feature on the target

feature. It analyzes all samples and enables visualization and exploration of the

overall relationship between the SD and input variables. The partial dependence

function is expressed in Equation 4.2:

f (xs) = Ec[ f (xs, xc)] =
∫

p2(xc) f (xs,xc)dxc (4.2)

In this context, xs denotes the feature(s) of interest for which our objective

is to visualize partial dependency, and xc denotes the rest of the feature variables

utilized in training the model. xc = x′s, and X = xs+xc constitutes the entire feature

set. In PDP, we assume that feature subset xs and xc are uncorrelated to each other

and hence can be calculated using average interaction effect [Friedman & Popescu

(2008)] as shown in Equation 4.3:

f (xs) =
1
n

n

∑
i=1

f (xs, xc) (4.3)

Algorithm 3 displays the pseudocode to find the Partial dependency (PD) values

of the samples.

Nevertheless, a significant drawback arises in the case of PD plots when pre-

dictor variables exhibit substantial interdependence, a frequent occurrence in ex-

tensive observational datasets. In contrast, ALE naturally accounts for interaction

effects between variables, does not assume independence, provides a more gran-
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Algorithm 2 Calculation for the SHAP-value of a feature requires: [Rajput et al.
(2023a)]:

Input: The number of features N and their respective real values v, indicating
their participation, are considered. The participation vector v for a specific
feature is computed by perturbing the feature values within coalition π , where
k represents the number of sampling permutations. Further details can be
found in the following study [Molnar (2021)].

Output: SHAP value φ j for the desirable feature j ε N.
for Iteration : 1, 2, ...K: do

Selecting π stochastically from the set of all permutations Π(N)
for j ε N : do

Computing antecedent set Pπ
i = { j ε N | π( j)< π(i)}.

φ j = φ j +
v(P̂π

j ∪ j)−(v(P̂j))

K
end for

end for

Algorithm 3 The steps of obtaining PD value of samples involves [Rajput et al.
(2023a)]:

Input: Unique feature values xs = x1,x2, ...xn, where x is desirable feature.

Ouput: PD plot of desirable feature.
Steps:
for i ε (1, 2, . . . , k): do

Replace the original x1 values with the constant x1i in the training samples.
Calculating the predicted value vector from the modified version of the

training samples.
Calculate the average of the prediction to find f ′(x1i).

end for

The PDP for x1 is generated by plotting the pairs {x1i, f ′(x1i)} f or i = 1,2, ..n
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ular view of local effects, offers enhanced interpretability at the local level, and

focuses on the local effects within the observed range, and doesn’t require ex-

trapolation to derive meaningful insights. ALE [Apley & Zhu (2020)] can be

mathematically defined as underneath in Equation 4.4.

f1,ALE(x1)≡
∫ x1

xmin,1

E[ f1(X1,X2) |X1 = z1]dz1 − constant (4.4)

=
∫ x

xmin,1

∫
p2|1

(x2|z1) f1(z1,x2)dx2 dz1 − constant

where f1,ALE(x1) denotes the accumulated local effects of X1 on the model’s

predicted outcome,
∫ x1

xmin,1
is an integral sign, indicating that we are calculating the

integral over the range of X1 from xmin,1, and E[ f1(X1,X2) |X1 = z1] represents the

average prediction when X1 is fixed at z1 considering all possible values of X2. It

reflects the accumulation of local effects over this interval. In equation 4.4, we

calculate the local effect f1(x1,x2) of x1 at (x1 = z1,x2), then average this local

effect across all values of x2 with weight p2|1(x2|z1), and finally accumulating this

averaged local effect overall values of z1 up to x1. This avoids the extrapolation

required in PD plots.

LIME [Ribeiro et al. (2016b)] aims to construct a model within an inter-

pretable representation, ensuring local fidelity to the classifier’s behavior. In other

words, this model should accurately capture the local behavior of the classifier it

explains. Mathematically, the explanation LIME derives can be defined in Equa-

tion4.5:

LIME model(x) = argming∈G L( f ,g,πx)+ Ω(g) (4.5)
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Here, x refers to the specific sample we seek to explain, while f denotes the black

box model, g ∈ G where G is a set of explainable models such as decision trees

and linear models, πx is a proximity measure between an instance z and x to estab-

lish the concept of locality around, L serves as an indicator of the extent to which

g deviates from an accurate approximation of f within the locality defined by πx

and Ω(g) defines model complexity. In summary, LIME utilizes an interpretable

surrogate model g, which can explain a given instance x with reduced complex-

ity and minimized deviation within its locality. The procedure for training local

surrogate models involves the following steps [Molnar (2021)]:

1. Choose the specific instance you are interested in and for which you desire

an interpretation of its black-box prediction.

2. Introduce perturbations to your dataset and obtain black-box predictions for

these newly created data points.

3. Calculate weights for the new samples based on their closeness to the in-

stance of interest.

4. Train an interpretable model on the dataset, integrating the weighted varia-

tions.

5. Interpret the prediction by analyzing the local model.

Employing LIME is straightforward, but the challenge arises in accurately

defining the neighborhood, a task that can vary depending on the nature of the

problem.
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4.2 Interpreting the biological connection between ra-

diomics and gene expressions: Radiogenomics

As elaborated in Chapter 3, section 3.2.1, radiomics encompasses a diverse ar-

ray of features, encompassing shape and texture features derived from radiolog-

ical images. These features have demonstrated their capability to capture tumor

heterogeneity and malignancy. Notably, this heterogeneity holds significant bi-

ological implications, intricately linked to the underlying molecular landscape.

Radiomics presents an opportunity to directly interface with various omics data,

including proteomics, transcriptomics, and genomics. This integration can predict

clinical outcomes such as survival and treatment response, thereby facilitating the

development of personalized, patient-tailored medicine (PPM) [Mayerhoefer et

al. (2020)].

Figure 4.1. Proposed radiogenomics methodology for SD prediction.
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Hence, in this study, we have expanded the SD prediction approach to incor-

porate additional clinical information for predicting survival days and to establish

the correlation between radiomic and genomic features in gliomas, as depicted in

Figure 4.1.

4.2.1 Data source for radiogenomics

The BraTS2020 dataset [Bakas et al. (2017, 2018); Menze et al. (2014)] was em-

ployed to predict BTS and SD. Detailed dataset information is provided in Chapter

1, section 1.6. Additionally, supplementary clinical data such as gender, race, and

treatment details are sourced from the TCGA dataset1, while genetic data is also

obtained from the same TCGA dataset. These datasets are utilized to explore cor-

relations between radiomics and genetics. We thoroughly search the TCGA data

repository for each patient ID corresponding to the BraTS samples. The search

criteria include data categories such as transcriptome profiling, data type for gene

expression quantification, and experimental strategy such as RNA-seq. Conse-

quently, each sample in our study comprises gene expression values for 60,560

genes.

4.3 Proposed framework for radiogenomics

As depicted in Figure 4.1, the methodology highlights that BTS is a prerequisite

for SD prediction. This approach involves utilizing actual segmentation labels

from the BraTS dataset alongside the triplanar network discussed in Chapter 3

for feature extraction. The extracted feature sets include radiomic and location-
1https://www.cancer.gov/tcga
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based features, elaborated in supplementary Table 2, which are then employed to

train various ML models. These models are subsequently validated using the 34

samples standard to the TCGA dataset.

Additionally, we conduct training and validation on TCGA samples, employ-

ing a split ratio of 0.25. This process involves testing the samples both with and

without clinical details. To perform an ablation study, considering the limited

number of TCGA samples, we categorize them into two groups: long-term sur-

vivors (SD < 450 days) and short-term survivors (SD >= 450 days). Subse-

quently, the models are trained and tested using a 0.25 split ratio.

Moreover, to explore the relationship between the extracted features and genes,

we leverage genomic and clinical data from TCGA, where each sample contains

information on 60,560 genes. Initially, as part of the feature selection process,

we remove genes with a value of 0, which typically denotes missing or zero ex-

pression values. Subsequently, we utilize Pearson correlation (PC) and SRC with

a p ≤ 0.001 threshold to reduce the feature dimensions to 5830. Additionally,

we analyze these 5830 genes to identify those displaying similar behavior to the

extracted feature set and those showing uncorrelated or unrelated behavior. It’s

worth noting that the extracted feature set comprises 29 features outlined in Chap-

ter 3, along with three clinical pieces of information obtained from TCGA.

In this study, we conducted several ablation analyses to evaluate the impact

of individual components on the accuracy of SD prediction. Ablation studies are

essential, especially in scenarios with limited sample sizes, as they involve identi-

fying and removing unnecessary components or features that could contribute to

model complexity. The ablation study encompasses the following:
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1. For training, we rely on these segmentation outcomes for feature extraction

and validated on TCGA samples:

• Segmentation from triplanar network (with GTR status (samples =

117))

• Ground-truth segmentation from BraTS2020 dataset(with all resection

status (samples = 239))

2. For training and validation, we rely on TCGA 34 samples (with and without

clinical information).

3. Reframing SD prediction challenge as a binary classification task, given the

constraints of a limited dataset.

Our primary approach for prediction and classification tasks involves employ-

ing ensemble learning-based ML models, with the only exception being using an

LR model for classification. The parameters for all the regressor and classifier

models are shown in Supplementary Table 5.

4.4 Results and discussions

We initially discussed interpretations derived from SD prediction using interpre-

tation tools, followed by a discussion of outcomes from radiogenomic analysis in

a subsequent section 4.4.3.

During the initial phase of the study, our analysis centers on SHAP summary

(both global and local perspectives), SHAP distribution plots (both global and

local), SHAP force plots (local), and PDP (global). In contrast, the second phase
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delves into more exhaustive and intricate explanations, incorporating additional

interpretation methodologies such as LIME (local) and ALE (global), including

SHAP-summary, SHAP-waterfall plots, and PDP. Subsequent sections provide a

thorough examination of the 29 dominant features.

4.4.1 Global and Local Insights: Exploring SHAP and PDP

Explanations

SHAP showcases the share of features in the prediction within all possible combi-

nations of features. The SHAP value reveals how much an individual feature im-

pacts the prediction, with the signs indicating whether the effect on the prediction

outcome is positive or negative. Figures 4.2 and 4.4 show the SHAP summary and

waterfall plots, respectively, corresponding to the preliminary phase of the study.

The SHAP summary plot enables us to observe the global/general and local

(for individual samples) impact of features on the model’s prediction. Conversely,

the SHAP-waterfall plot allows us to observe the impact of features on a specific

sample. This allows us to investigate the contribution of features and their values

in a specific prediction, enabling a detailed examination of each feature’s behavior

for any desired sample.

In the SHAP-summary plot illustrated in Figures 4.2, the X-axis represents

the SHAP value, indicating the influence of features on the target variable (in

our case, it is SD). A higher absolute value indicates a higher effect on the target

variable, while the sign (+/-) denotes whether the impact is positive or negative

on the SD prediction. On the Y-axis, features are arranged in order of importance,

from top to bottom. Each dot on the summary plot corresponds to an instance,
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with the color representing the value of the respective instance. Blue indicates a

low feature value, while red signifies a high one.

In Figure 4.2, it is evident that the Wavelet-LLL firstorder InterquartileRange

(WIR) feature holds the maximum importance. This feature, derived from a first-

order radiomic analysis using the wavelet low-pass filter at each Z, X, and Y

direction, characterizes the distribution of pixel intensity values. The WIR feature

quantifies the pixel intensity within the 25% to 75% percentile range. Examining

this plot, we notice that samples with intermediate or high feature values (indi-

cated by purple and red colors) of WIR positively contribute to the prediction,

exhibiting maximum positive SHAP values. In simpler terms, an intermediate

or higher feature value of the WIR feature correlates with increased patient sur-

vival days. Furthermore, larger samples are concentrated (depicted by blue color)

within the SHAP value range of -15 to -25, as observed from the WIR feature

row on the Y-axis. This suggests that a majority of the samples fall within this

SHAP range, and these samples play a role in reducing patients’ SD. Addition-

ally, it indicates that tumor intensity (pixel value) information falls within this

range, contributing to decreased survival days. This highlights the significant role

played by the intensity of tumor pixels in MRI scans. [Aboussaleh et al. (2021);

Bae et al. (2018); Tessamma & Ananda Resmi (2010)]. Moreover, exploring spa-

tial heterogeneity can enhance our understanding of the origin and progression of

glioblastomas.

The 2nd most significant feature is Age. As depicted in Figure 4.2, it is evi-

dent that samples with lower Age values exhibit positive SHAP values, indicating

increased SD for patients. Conversely, higher Age values are associated with neg-

ative SHAP values, suggesting reduced patient SD. This observation corresponds
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with medical understanding, wherein the Age of GBM patients plays a critical

role in determining survival duration; specifically, a lower Age indicates higher

survivability, and an older age of lower survivability [ASCO (2022)].

The 3rd most critical feature is cent wb x, depicted in Figure 4.2. This feature,

a location-based attribute, represents the centroid coordinate of the entire tumor

along the X-axis of an MRI image, denoting a physical coordinate. The plot il-

lustrates that intermediate and higher feature values of cent wb x hurt prediction.

Hence, higher feature values are associated with reduced patients’ SD. Notably,

on the X-axis, which signifies the axial view [Mahmoudzadeh & Kashou (2014)],

higher feature values correspond to the physical coordinates of the brain’s central

region. Thus, the plot indicates that tumors in the brain’s central and latter-mid

parts will likely decrease patients’ survival days [Fyllingen et al. (2021)]. Compa-

rable trends can be noted for the cent at x and cent nec x characteristics, denoting

the centroids of the active tumor and necrosis areas, respectively.

The 4th most significant feature is log-sigma-2-0-mm3D firstorder Kurtosis

(LFK). This feature, a first-order radiomic attribute, is extracted using a LOG fil-

ter, indicating the distribution of voxels without considering their spatial relations

[Rizzo et al. (2018)]. LFK measures the tailedness or presence of outliers in the

data distribution. Observing the plot, it is evident that low kurtosis values cor-

respond to an increase in SD, while higher kurtosis values are associated with a

reduction in patients’ SD. Most samples fall within the SHAP-value range of -20

to 60.

The 5th most crucial feature is log-sigma-1-0-mm-3D glcm Correlation (Glcm

corr). This feature, a second-order radiomic attribute, is extracted using a LOG

filter and measures the inter-relationship of intensity between neighboring voxels
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[Rizzo et al. (2018)]. According to the plot, higher feature values correspond to an

increase in SD, while lower feature values are associated with a reduction in SD.

A higher correlation between voxel values increases SD, whereas low correlation

values decrease SD.

The 6th most important feature is wavelet-HHH firstorder Kurtosis (FOK).

This first-order radiomic feature is extracted using a wavelet filter, employing

high-pass filters in the series of z, y, and x directions. Similar to the 4th most im-

portant feature, the distribution of voxels is independent of their spatial relations.

According to the plot, lower feature values are responsible for increasing SD. For

further details, please refer to Figure 4.3 for the SHAP distribution plot. In sum-

mary, upon comparing all the features, it can be observed that the range of SHAP

values for all features falls within -40 to +40 on the X-axis. Additionally, as the

importance of features decreases, the range of SHAP values also decreases. This

suggests that features with a lower SHAP range have a comparatively lower effect

on SD.

Note: The SHAP values of most samples can be further examined by referring

to Figure 4.3. This figure illustrates the distributions of SHAP and feature values

for the respective features.

Furthermore, the SHAP-waterfall plot illustrated in Figure 4.4 provides a vi-

sual interpretation of feature contributions in predicting a specific instance. On

the X-axis, the average SD (E[f(x)]) is defined, while on the Y-axis, the features

are organized in descending order according to their SHAP values (from top to

bottom). From this plot, we can analyze the impact of features, whether negative

(blue) or positive (red), and how they contribute to shifting the prediction from

the expected outcome E[ f (x)]. Here, the expected outcome represents the aver-
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age of all outcomes considering all the samples. For the specific sample under

consideration, the model output is f (x) = 331.732, while the expected output is

E[ f (x)] = 478.91. This significant impact can be comprehended by measuring the

influences of each feature.

The SHAP value of each feature in Figure 4.4 illustrates its weightage. By

summing all the SHAP values from each feature (N) and adding them to the aver-

age SD prediction, we can ascertain the individual contributions of these features

to the model output. Mathematically, this is represented by f (x) = E( f (x)) +

∑N SHAP, where ∑N SHAP denotes the summation of SHAP values across all

features. This analysis shows that the feature Age significantly impacts the model

outcome. For instance, in this sample, the Age value of 71.37 decreases the av-

erage survival days by 39.33 days (a negative value indicates a reduction in SD).

Similarly, the cent wb x feature with a value of 164.651 also reduces SD by 28.22

days. Mapping these features, Age and cent wb x, to the SHAP-summary Plot

(Figure 4.2) or the SHAP-distribution plot (Figure 4.3), which illustrates global

impacts, reveals similar observations of SD reduction for these features. For ex-

ample, visualizing the Age and cent wb x features on the SHAP-summary Plot

shows that higher values correspond to a reduction in SD. Similarly, the SHAP

distribution plot demonstrates a decrease in SD for these features. This consis-

tency suggests that these features exhibit consistent behavior both globally and

locally.

Furthermore, additional insights were gained by combining the SHAP sum-

mary (Figure 4.2), SHAP-distribution plot (Figure 4.3), and PDP of the top 6

dominant features (Figure 4.5).
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(a) (b) (c)

(d) (e) (f)

Figure 4.3. Distribution of feature values and its SHAP-values for the topmost
six prominent features, namely (a) WIR feature, (b) Age feature, (c) cent wb x
feature, (d) LKF, (e) Glcm Corr feature, (f) FOK feature. The feature values of
corresponding features are shown on the X-axis, and the Y-axis showcases the
SHAP value of the corresponding feature. Each point in blue is a sample. The
barplot in grey represents histograms of the values of the respective feature. The
SHAP-value distribution for the residual features is shown in Supplementary Fig-
ure 3 [Rajput et al. (2023a)].
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Figure 4.5. The PDP analysis focuses on the six most essential features, illus-
trating the marginal effects of each feature on SD. Precisely, the plots depict the
impact of(a) WIR feature, (b) Age feature, (c) cent wb x feature, (d) LKF fea-
ture, (e) Glcm Corr feature, (f) FOK feature on SD. The X-axis represents the
values of the corresponding feature, while the Y-axis indicates the average rate of
change/marginal effect of the feature’s value on the SD prediction. Vertical lines
on the X-axis illustrate the distribution of most samples. Supplementary Figure 2
contains the PDP for the remaining features [Rajput et al. (2023a)].

The PDP shows a marginal effect between desirable and target features (SD)

[Friedman (2001)]. This plot demonstrates how a dependent variable changes as

one of the predictor variables varies while all other variables remain constant. Al-

tering the value of a specific feature introduces more variability in the average

SD, indicating the feature’s significance. In this examination, we focus on the

top six features based on their importance, as determined by their absolute SHAP
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values. These features include WIR, Age, cent wb x, LFK, Glcm Corr, and FOK.

The partial dependence plots for these dominant features are displayed in Figure

4.5, while plots for the remaining features can be found in Figure 2 in the Sup-

plementary section. Here, the ordering of the PDP features is derived from the

feature importance ranking obtained from the SHAP summary plot. (Figure 4.2).

Moreover, upon visualizing the PDPs, we observe that the marginal impacts

align with the order of importance of features identified through the SHAP-value

analysis. Here’s a comprehensive examination of the top six features: The marginal

effect of the WIR feature on SD prediction is depicted in Figure 4.5. The trend

indicates a sharp increase in value within the range of 100 to 300, followed by

a reduction within the range of 300 to 350, and a saturation within the range of

350 to 800 intensity value. This indicates a notable high heterogeneity in inten-

sity within the range of 100 to 300, resulting in a significant increase in marginal

impact. Comparing the PDP (Figure 4.5(a)) with SHAP (Figure 4.2) and its distri-

bution plots (Figure 4.3 (a)), it can be inferred that the intensity ranging between

100-300 contributes to a decrease in SD (as demonstrated by the reduction in

the SHAP value). Therefore, it can be inferred that tumor pixel intensity within

this range negatively impacts a patient’s survival. Moreover, as highlighted in this

study, increased tumor heterogeneity correlates with increased malignancy [Gupta

et al. (2019)]. This finding is consistent with prior studies indicating wavelet filters

effectively capture enhanced texture features.

Likewise, in the PDP plot illustrating Age feature (Figure 4.5(b)), we can iden-

tify the trend of marginal effect, indicating the largest deviation in marginal effects

for patients with lower ages, signifying maximum influence on SD. Furthermore,

the marginal effect diminishes with the increasing age of patients. Combining
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inferences from the SHAP summary and SHAP-distribution plots, it’s clear that

beyond the age of 60, there is a decline in SD (as indicated by a decrease in

SHAP-value beyond this range.

Further, the PD plot for the cent wb x feature (depicted in Figure 4.5 (c)) high-

lights that the marginal effect is more noticeable when the centroid falls within the

range of values approximately between 75 and 112, and less significant for val-

ues ranging from 113 to 160. By comparing these ranges to the SHAP distribution

plot, it becomes evident that the former range of values increases the SD while the

latter range reduces them. This suggests that tumor lesions located in the central

or posterior part can be fatal to patients.

Meanwhile, the LFK feature characterizes radiomic first-order statistical at-

tributes, measuring the peakedness of data distribution. A kurtosis value (k) is

3 for a Gaussian distribution. When k > 3, the dataset tends to have significant

outliers, while k < 3 suggests fewer or no outliers. The PD plot (depicted in Fig-

ure 4.5(d)) illustrates that for k = 3, there is a notable marginal impact on SD. By

comparing the PDP with the SHAP and SHAP-distribution plots, it can be inferred

that for most samples, k = 3, leads to an increase in SD. However, there are also

sufficient samples with k > 3, which decreases SD. This suggests a considerable

number of outliers or intra-heterogeneity among the samples. As mentioned by

[Steven et al. (2014)], diffusion kurtosis imaging works on a similar principle of

capturing non-normal distribution behavior, which signifies tissue heterogeneity.

It is observed that the survival days are positively skewed [Der & Everitt (2005)].

The Glcm Corr is a radiomic feature that evaluates the joint probability of oc-

currence of specified pixel pairs with designated intensity values. Utilizing the

gray-level co-occurrence matrix (GLCM), it examines spatial relationships be-
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tween pixels at particular distances and directions. From the PDP (depicted in

Figure 4.5(e)), it is clear that when the correlation between pixel pairs equals or

exceeds 0.6, it significantly impacts SD. Similarly, when examining the correla-

tion threshold of 0.6 in the SHAP and SHAP-distribution plots, one can observe

its positive influence, as evidenced by a positive SHAP value. This finding is con-

sistent with the study by Sanghani et al. [Sanghani et al. (2018)], highlighting the

crucial role of texture features in SD prediction.

Furthermore, the FOK is another first-order statistical feature, similar to the

LFK (the 4th most significant feature); but it is computed employing wavelet high

pass filters. A comparison of their PDPs (depicted in Figure 4.5(d) and (f)) shows

that both capture kurtosis information, however, in distinct dimensions. From the

PDP (shown in Figure 4.5(f)), it is apparent that the kurtosis value sharply rises

between 0 and 100 and then remains steady for subsequent values. Upon observ-

ing the SHAP distribution, it can be inferred that most samples fall within this

range, with those near values 1−10 decreasing SD while the remainder increas-

ing SD. However, some samples are sparsely distributed, indicating their outlier

status.

These findings emphasize the significance of these features in predicting SD.

Through the analysis above, we recognize that Age, WIR, cent wb x, LFK, Glcm

Corr, and FOK play pivotal roles in determining a patient’s SD. Similar scrutiny

can be applied to the remaining features. Notably, the WIR feature offers insights

into tumor heterogeneity related to an increase in tumor malignancy. Addition-

ally, the Age feature exhibits a clear trend in survivability, indicating diminish-

ing survival prospects with increasing age (this is additionally supported by the

Kaplan-Meier (KM) plot, as depicted in Supplementary Figure 4). Meanwhile,
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the centroid of tumors facilitates the identification of tumors in the central or pos-

terior regions, which are detrimental to patients.

All these signify the importance of these features in determining the SD. With

the above analysis, the Age, WIR, cent wb x, LFK, Glcm Corr, and FOK plays

a crucial role in determining a patient’s SD. Similarly, we can analyze other re-

maining features. Finally, we agree that the WIR feature can tell us about tumor

heterogeneity associated with high malignancy. Again, the Age feature shows us

the trend of survivability, where the survival chances decrease with the patient’s

increasing age (this is further validated by the KM [Goel et al. (2010)] plot as

shown in the Supplementary Figure 4). Meanwhile, the centroid of tumors en-

ables us to locate tumors in the central or latter-central part, which is detrimental

for patients. The alignment of these observations with medical findings and rel-

evant research indicates the features’ reliability and validates the effectiveness of

explainability methods like SHAP and PDP.

4.4.2 Global and Local Insights: Exploring SHAP, LIME, PDP

and ALE Explanations

In the second phase of the study, RFR and ERFR predictor models are applied to

predict SD across all feature variants. However, for interpreting feature behavior,

our focus is on the best variant of the feature set (Variant 4). We’ll first discuss

the visual interpretation of feature behavior from the ERFR models, followed by

the interpretation from the RFR models.

Figure 4.6 presents the SHAP-summary plots for the Variant 4 (best-performing)

feature set. It is obtained from an ERFR trained model. In the broader context
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of this study, we consistently observe the persistence of the top dominant fea-

tures identified in the initial phase. These include Age, location-based features,

Glcm Corr, WIR, and LFK. The observation regarding the influence of features or

feature values on the increase or decrease in SD prediction shown in Figure 4.6 is

comparable across different features, as demonstrated in Figure 4.2.

Furthermore, the SHAP summary plot for all variants is available in the Sup-

plementary section (Figure 5). In this broader context, it becomes evident that the

ranking of most features remains consistent across all variants.
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Figure 4.7. PDP plots (from ERFR trained model) of the first four features of all
the variants shown in the SHAP summary plot. The X-axis illustrates the feature
name including Age, cent ncr x, cent at x, Glcm Corr and its values. The Y-axis
depicts the average changes in SD, corresponding to the values on the X-axis.

Additionally, for more insights, PDP plots were generated for the first four fea-

tures (Age, cent ncr x, cent at x, Glcm Corr) depicted in the SHAP summary plot
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in Figure 4.6. Here, Age refers to the age of patients provided with the dataset,

cent ncr x and cent at x denote the centroids of necrosis and active tumor le-

sions, respectively, while Glcm corr) represents the correlation in the context of

the GLCM, where it signifies the probability of encountering two specific gray

levels (i and j) together in an image at a specific spatial relationship defined by

a distance (δ ) and an angle (θ ). This joint probability distribution offers insights

into the relationships between pairs of pixel values in an image, which is valu-

able for tasks such as texture analysis, pattern recognition, and feature extraction

in image analysis and processing. In the context of GLCM, the correlation mea-

sures the linear relationship between gray levels in an image at a specific spatial

relationship defined by GLCM. Please refer to [Van Griethuysen et al. (2017)] for

more detailed information.

The PDP plot showcases the behavior of all variants concerning the four fea-

tures mentioned in the preceding paragraph. It illustrates how the predicted out-

come varies as the selected feature(s) values change while other features remain

constant. The Age feature exhibits the most significant changes in predicted out-

comes, decreasing in importance in descending order. Increasing age has a dimin-

ishing effect on SD prediction. A comparable trend is observed for the centroid

of necrosis and active tumor. However, in the case of GLCM Corr, the impact

is more evident when the correlation exceeds 0.6. Aligning this behavior pattern

with the SHAP summary plot indicates that specific feature values contribute to

increasing or decreasing SD prediction.
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Figure 4.8. ALE plots (from ERFR trained model) of first four features of all
the variants shown in SHAP summary plot. The X-axis presents the feature name
including Age, cent ncr x, cent at x, Glcm Corr and its values. The Y-axis depicts
the average standard deviation changes corresponding to the values on the X-axis
[Rajput, Kapdi, Raval, et al. (2024)].

Additionally, we generate ALE plots presented in Figure 4.8, using the alibi

explain tool [Klaise et al. (2021)] for the initial four features of all the variants,

as presented in the SHAP summary plot. This plot demonstrates how the model’s

predictions change as the feature of interest varies. On the X-axis, the feature

names and their respective values are depicted. At the same time, the Y-axis

illustrates the variations in average SD concerning the values displayed on the X-

axis. The overall behavioral pattern remains consistent compared to the PDP plot

shown in Figure 4.7. It reveals how the feature values impact the SD prediction

negatively or positively. The insights gained from this plot align with those from
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the PDP and SHAP summary plots.

(a)

(b)

Figure 4.10. (a) SHAP force plot for a sample illustrating features that contribute
beyond an 8% threshold. Where f(x) represents the predicted value for this sample
from the validation set, a subset of the training set. The base value corresponds
to the expected value of the training set. Features with their values highlighted
in red indicate an increasing SD, while those in blue signify a decreasing SD.
The size of the arrow indicates their contribution to prediction. (b) LIME plot
for a sample showcasing the impact of the top five features. The predicted values
with minimum and maximum are shown here. The features with their values in
orange show their contribution in orange, indicating an increasing SD, while those
in blue signify a decreasing SD. The features are arranged in decreasing order of
importance.
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Further, for visual interpretation from the RFR model, the SHAP summary

plot is presented in Figure 4.9, reaffirming the consistent ranking of top features.

Furthermore, to delve into the behavior at the sample level, we utilized the

SHAP force plot and LIME tools to visualize the feature behavior of a sample, as

depicted in Figure 4.10 (a) and Figure 4.10 (b), respectively. The Python SHAP

(version 0.42.1) and LIME tool (version 0.2.0.1) were employed for this purpose.

In Figure 4.10 (a), we showcased features whose contribution exceeds 8%

(meaning, only features with a Shapley value magnitude greater than 8% of the

sum of all absolute Shapley values will be displayed). The size and color of the ar-

row denote the magnitude and direction (increasing/decreasing) of contribution to

SD prediction. Red color indicates an increase in SD, whereas blue color signifies

a decrease in SD.

In contrast, Figure 4.10 (b) presents the top five contributing features. Here,

features and their respective values highlighted in orange indicate an increase in

SD, while those in blue signify a decrease in SD. When comparing these two fig-

ures, it’s apparent that the top three performing features remain consistent and

exhibit similar effects on SD prediction. Furthermore, we include a SHAP water-

fall plot in Supplementary Figure 6 for the identical sample, indicating a compa-

rable behavior. We employ the Python SHAP tool (version: 0.42.1) for deriving

summary, force, and waterfall plots.

For global interpretation, Sklearn (version=1.1.1) [Pedregosa et al. (2011)]

PartialDependenceDisplay tool is employed to generate a PD plot, and alibi (ver-

sion=0.9.4) [Klaise et al. (2021)] ALE tool is used to analyze the behavior of the

initial four features from the SHAP summary plot (shown in Figure 4.9). The PDP

plot can be observed in Figure 4.11 (a), and the ALE plot in Figure 4.11 (b). The
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X-axis in the plot shows features and their respective values, whereas the Y-axis in

the PDP plot represents the average predicted SD as the chosen feature varies. In

contrast, other features are held constant or averaged. In the ALE plot, the y-axis

signifies the accumulated local effect of the desirable feature on the SD integrated

over the specified feature range.

(a)

(b)

Figure 4.11. Visualizing the first four features using (a) PDP and (b) ALE plots
allows for the analysis of the global behavior of these features derived from the
SHAP summary plot. Feature values are represented on the X-axis, while the
vertical bar on the X-axis indicates data distribution. In PDP plots, the Y-axis
denotes the average predicted SD as the selected feature changes. Conversely, in
the ALE plot, the Y-axis illustrates changes in the average SD across different
intervals of the feature displayed on the X-axis.
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Examining the average changes in the SD plotted on the Y-axis for PDP (Fig-

ure 4.11 (a)) and ALE (Figure 4.11 (b)) plots for the X-axis reveals a consistent

overall behavioral pattern for the desired features. For instance, when analyzing

the Age feature in a PDP plot, notable changes in the average effect, indicated on

the Y-axis (SD:500), are observed within the 40-50 age range (depicted on the

X-axis). A larger magnitude of changes in the average effect signifies the impor-

tance of the feature in predicting SD. This observation is similarly reflected in the

ALE plot for the Age feature. The vertical bar on the X-axis reveals the distri-

bution of feature values. For the Age feature, the distribution spans evenly from

40 to 80. However, for Glcm Corr, most features exhibit correlation values rang-

ing from 5 to 0.75, with one sample displaying a negative correlation. Similarly,

for cent ncr x, most centroid coordinates of necrosis regions along the X-axis fall

between 7-170. Meanwhile, for FOK, most values ranging from 3 to 50 indicate

high (positive) kurtosis, suggesting a concentration of the distribution towards the

tails rather than the mean. In diffusion imaging, kurtosis serves as a metric within

diffusion kurtosis imaging (DKI) for evaluating tissue microstructure, providing

insights into tissue barrier complexity and cellularity [Steven et al. (2014)]. Devi-

ations from typical kurtosis values may indicate alterations in tissue integrity and

potential pathological changes. Studies have found a correlation between positive

kurtosis and increased tissue heterogeneity in conditions like Ischemia and Infarc-

tion [Steven et al. (2014)]. Cauter et al. [Van Cauter et al. (2012)] noted in their

study that high-grade tumors exhibited higher kurtosis values, likely due to greater

cellular density, reduced cell size, and increased complexity (heterogeneity) in the

tumor microenvironment.
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4.4.3 Radiogenomic analysis

The outcomes from radiogenomics analysis are discussed hereafter. Table 4.1 il-

lustrates performance comparisons between regression and classification models

for SD prediction. Upon comparing Table 4.1 (a) and (b), we observe that the

models, particularly those in Table 4.1(b), perform better when considering all

samples (n = 239) from various resection statuses. Table 4.1(c) presents the per-

formance of models with and without clinical information, including gender, race,

and treatment type. Models trained with clinical information outperform those

without it, highlighting the importance of clinical information as a crucial prog-

nostic factor in SD predictions. Also, various studies have emphasized the corre-

lation between survival prediction and various clinical factors such as age, therapy

information, gender, and performance status [Rajput et al. (2023a); Pálsson et al.

(2022); Michaelsen et al. (2013); Liang et al. (2020); Li et al. (2021)]. Hence,

gender-specific and treatment-specific survival analysis is conducted, as depicted

in Figure 4.12 and Supplementary Figure 7.

Table 4.1(d) presents the results obtained by classifying survival days into two

categories. Despite the smaller samples, the classifier models have demonstrated

superior performance to the regressor models. The best accuracy is 0.727 for the

RF classifier. In contrast, the Receiver Operating Characteristic-Area Under the

Curve (ROC-AUC) score is highest for LR, followed by XGB with 0.786 and

RF with 0.750. The ROC-AUC curve for the LR, RF, and XGB can be seen in

Figure 4.13. The ROC-AUC score assesses the classifier’s ability to differentiate

between positive and negative classes, ranging from 0 to 1. A higher ROC-AUC

signifies superior performance. An ideal model achieves a ROC-AUC of 1.0,
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while a random model scores 0.5. This suggests that classification may be more

effective in scenarios with limited data for survival prediction.

TABLE 4.1
The performance evaluation of SD predictor models using ensemble learning in-
corporates Random forest (RF), Extra random forest (ExtraRF), Xtreme gradient
boosting (XGB), and Logistic regressor (LR). These models are applied to regres-
sion and classification tasks, respectively. MSE represents a mean squared error,
while ROC-AUC indicates the Receiver Operating Characteristic - Area Under
the Curve.

(a) Trained through TN (with GTR status), tested
on TCGA dataset.

Regressor
Model

Train MSE Test MSE

RF 098144.45 906973.28
Extra-RF 110966.41 885217.53
XGB 108162.88 886718.95

(b) Trained with all resection samples, tested on
TCGA dataset.

Regressor
Model

Train MSE Test MSE

RF 099524.92 877985.34
Extra-RF 104315.72 874357.20
XGB 101858.18 884607.68

(c) TCGA samples with* and without** clinical data were utilized for training and testing, with a
split ratio of 0.25

Regressor
Model

Train* MSE Test* MSE Train** MSE Test** MSE

RF 425635.98 141919.67 417538.62 176197.62
Extra-RF 517174.43 217368.40 793569.79 221054.26
XGB 870795.50 156186.83 64116.535 198083.56

(d) Binary classification was conducted, dividing samples into two groups: those with SD of less
than 450 days and those with a duration of 450 days or more. The training and testing datasets
were divided using a ratio of 0.30

Classifier Model Train Accuracy Test Accuracy ROC-AUC score
LR 0.565 0.636 0.857
RF 0.913 0.727 0.750
Extra-RF 0.696 0.636 0.607
XGB 0.565 0.636 0.786
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(a) (b)

Figure 4.12. Gender-wise boxplots of SD are depicted in (a), while (b) illustrates
that survival probability, indicated on the Y-axis, is higher in women compared to
men. The X-axis represents SD.

Additionally, framing the SD prediction challenge as a binary classification

task results in better performance than regression models, especially when dealing

with smaller datasets. The reasons are as follows:

• Simplicity: By dividing survival days into “long-term” and “short-term”

categories, it makes it easy for the model to learn patterns and make predic-

tions.

• Interpretability: Categorizing SD into two groups facilitates a more straight-

forward interpretation of results, distinguishing between patients likely to

have long-term or short-term survival and aiding clinical decision-making.

• Imbalanced data handling: In survival prediction tasks, data may be imbal-

anced and scattered across the population.
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Figure 4.13. Comparison of ROC-AUC curves, evaluates the sensitivity and (1 -
specificity) using multiple classifiers, including (a) LR, (b) RF, (c) ExtraRF, and
(d) XGB.

In Figure 4.12(a), the genderwise boxplot reveals that females (Class 1) tend

to have longer survival days compared to males (Class 0). Specifically, the me-

dian survival days for males is 500, whereas for females, it is 1000. Figure 4.12(b)

illustrates the survival probability for both genders. The Y-axis depicts survival
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probability, while the X-axis depicts SD. Notably, females exhibit a higher sur-

vival probability than males. The supplementary Figure 7 also presents survival

analysis using the KM statistical method Goel et al. (2010), highlighting the im-

pact of treatment information, encompassing radiation therapy and pharmaceuti-

cal therapy.

4.4.4 Interactions in radiomics - genomics

In the subsequent phase of this study, we explore the interaction between the ex-

tracted feature sets and genetic information. We reduce the available gene infor-

mation as outlined in Section 4.3. Further, Figure 4.14 illustrates the correlation-

histogram between the initial three extracted feature categories and the reduced

gene feature set. The rest of the features’ correlation-histograms refer to Supple-

mentary Figure 8.

Figure 4.14. The correlation-histogram illustrates the distribution of genes
across three feature categories, with their corresponding PC values. Correlation-
histogram of the remainder features is illustrated in Supplementary Figure 8.

This correlation-histogram plot illustrates the distribution of genes across var-
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ious feature categories and their corresponding PC values. By examining these

plots, we gain insight into the skewness and kurtosis within the gene dataset, aid-

ing in identifying asymmetry and tails in the distribution of genes, respectively.

For example, the gene distribution in the Age plot appears to be normally dis-

tributed, while survival days exhibits positive skew, and cent at x displays neg-

ative skew. Additionally, the gene distribution in all plots with normal kurtosis

indicates minimal outliers in the data distribution.

While PC measures the linear associations among features, 1 signifies a com-

plete positive linear relationship, -1 indicates a complete negative linear relation-

ship, and 0 denotes no linear relationship between the features. Highly correlated

features provide redundant information, while less correlated ones provide unique

information. We can observe from Figure 4.14 that the feature sets do not fall into

extreme values, suggesting that gene information is largely uncorrelated with the

feature set. This signifies that it carries unique information useful for SD predic-

tion.

Further, to deepen our understanding of the correlation between the feature

set and gene information, we dissect the gene feature set into two categories. In

the first category, we examine gene features highly correlated with the feature set

to explore their similarities with the PC threshold value >= 0.7. Conversely, we

focus on gene features exhibiting low correlation with the feature set in the sec-

ond category. This analysis aims to uncover how these sets could be integrated

to provide complementary information, potentially enhancing their utility for SD

prediction. Here, we use the PC threshold value <= 0.006. The distribution plots

of both categories are shown in Supplementary Figure 9 and Figure 10. These
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plots aid in identifying the frequency of genes and their corresponding PC val-

ues within each feature category. They provide insight into the maximum and

minimum genes following each category and their respective PC values.

Following the thresholding process in the first and second categories, we iden-

tified 2940 and 188 genes correlating with the extracted feature set. These results

are illustrated in Figure 4.15 and Figure 4.16, respectively. In Figure 4.15, ex-

tracted feature categories are arranged in descending order, where the maximum

gene falls under WIR, which measures the variability of intensity values within an

image, specifically focusing on the middle 50% of the data. Some of the high-

lighting genes from Figure 4.15 are shown in Table 4.2, which are related to the

poor prognosis of glioma patients. It suggests that specific genes contain comple-

mentary information to the features. This may potentially aid in the prognosis of

SD and improve the prediction of patient outcomes. However, in this study, we

focused on analyzing similar behavior between extracted features and genes. Ex-

amining the similarities between radiomic features and genes can offer valuable

insights into the fundamental molecular mechanisms of diseases. Researchers

deepen their understanding of disease pathogenesis and progression by uncov-

ering the biological pathways and molecular signatures associated with specific

radiomic characteristics.
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TABLE 4.2
The association between genes and extracted feature set, with genes identified as
being linked to poor prognosis of SD in glioma patients. EGFR and EGFR-AS1
are known to have an association with various cancers. However, we found that
EGFR-AS1 has a poor prognosis of SD with the used dataset. Details regarding
the features are available in the Supplementary Table 2.

Gene Feature set

PTEN [Hashemi et al. (2023);
Han et al. (2016)]

log-sigma-4-0-mm-
3D glszm LargeAreaLowGrayLevelEmphasis

EGFR-AS1 [Zhu et al.
(2023); Dong et al. (2019)]

wavelet-LLH firstorder InterquartileRange

EGFR-AS1 [Zhu et al.
(2023); Dong et al. (2019)]

wavelet-LHL glcm ClusterShade

EGFR-AS1 [Zhu et al.
(2023); Dong et al. (2019)]

log-sigma-1-0-mm-3D firstorder Variance

EGFR-AS1 [Zhu et al.
(2023); Dong et al. (2019)]

log-sigma-4-0-mm-3D glcm ClusterShade

EGFR-AS1 [Zhu et al.
(2023); Dong et al. (2019)]

log-sigma-2-0-mm-
3D glrlm HighGrayLevelRunEmphasis

C8orf44 [Bao et al. (2013)] cent ncr x

C8orf44 [Bao et al. (2013)] wavelet-HHH glcm DifferenceAverage

NF1 [Lobbous et al. (2020);
D’Angelo et al. (2019)]

log-sigma-4-0-mm-
3D glszm LargeAreaLowGrayLevelEmphasis

PLK2 [Cao et al. (2021)] wavelet-HHH glcm DifferenceAverage

ATXN2 [Hoelzinger et al.
(2005)]

log-sigma-1-0-mm-3D glcm Correlation

ATXN2L [Hoelzinger et al.
(2005)]

log-sigma-3-0-mm-3D firstorder Energy

ATNX10 [Hoelzinger et al.
(2005)]

LLH ngtdm Coarseness

ZNF554 [Balogh et al.
(2020)]

wavelet-LLH firstorder Range

RAPGEF2 [S. Long & Li
(2019)]

Age, wavelet-HHH gldm DependenceVariance

LINC00205 [S. Long & Li
(2019)]

log-sigma-4-0-mm-3D glcm SumAverage
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In contrast, from Figure 4.16, we can observe that most genes positively cor-

relate with the extracted radiomics features. Furthermore, The top three radiomic

feature categories, with the highest number of genes falling under each, are wavelet-

HHH firstorder Kurtosis (FOK) (specifically 109 out of 244), wavelet-LLH ngtdm

Coarseness (Coarse) (23 genes), and waveletHHH glrlm Run-LengthNonUniformity

(RLNU) (19 genes). The top 10 genes with the highest absolute correlation values

with each FOK, Coarse, and RLNU, as depicted in Figure 4.16, are listed in Table

4.3, Table 4.4, and Table 4.5 along with their direct or indirect roles in gliomas.

The maximum positive correlation value indicates that as one set of features in-

creases, the other set also increases proportionally. The correlation plot between

genes and each of the three feature classes is shown in Supplementary Figure 11.

In radiomics, FOK represents a first-order statistical radiomic feature extracted

from the actual label segmentation map after applying a wavelet high pass filter

across all three dimensions. Since these features originate from single-pixel or

single-voxel analyses, they are referred to as first-order statistical (FO) texture

analysis (TA) features, regardless of the spatial relationships of pixels/voxels. FO

represents a histogram representation of image intensities in a predefined region of

interest. TA provides a noninvasive approach for quantifying tissue macroscopic

heterogeneity, indirectly reflecting microscopic tissue heterogeneity [Soni et al.

(2019)]. In this context, kurtosis represents the sharpness or pointedness observed

in a histogram, offering insights into the visual contrast and describing the shape

of the intensity distribution of data [Mayerhoefer et al. (2020)].

Whereas, Coarse extracts high-order TA features which represent the disparity

in gray-level values between the central voxel and its neighboring area, thereby

capturing the spatial frequency of changes in gray-level intensities [Rajput et al.
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(2023a); Mayerhoefer et al. (2020); Papp et al. (2018)]. Similarly, RLNU is also a

high-order statistical TA feature that measures the distribution of gray-level inten-

sity values and their spatial relationships in an image regarding the run length of

pixels. First and second-order TA are the most commonly employed techniques

for survival analysis [Soni et al. (2019); Jang et al. (2020)].

Moreover, wavelet filters have demonstrated significant utility in medical imag-

ing by providing exploration across diverse spatial-frequency scales. This capa-

bility facilitates improved correlation of significant features, enhancing compu-

tational efficiency and robustness to data variations and noise [Jin et al. (2005)].

Furthermore, heterogeneity plays a crucial role in characterizing malignancy, re-

flecting adverse tumor biology. Thus, kurtosis has demonstrated its effective-

ness in capturing the malignant characteristics of gliomas [Sofie Van Cauter et al.

(2012)].

TABLE 4.3
The association between genes and the FOK feature class, with genes identified
as being linked to poor prognosis in glioma patients.

Gene PC Functions

NPR3 0.937 It encodes natriuretic peptide receptors, which regulate

blood metabolic and growth processes. This gene is as-

sociated with numerous cancers, including osteosarcoma,

renal carcinoma, and gliomas [H. Yang et al. (2019)].

AC009318.4

long non-

coding

RNAs

(lncRNAs)

0.916 It is substantial evidence from studies suggesting its role

in cancer development and progression [Han Li & Chen

(2015)]. However, the potential roles of lncRNAs in the

biogenesis and development of gliomas have not been ex-

plored [X. Zhang et al. (2012)].
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AFDN-DT

lncRNAs/

MLLT4 anti-

sense RNA1

(MLLT4-

AS1)

0.9 This gene has been found as a tumor suppressor in gas-

tric cancer. Its association between AFDN-DT suppres-

sion and DNA hypermethylation and DNA methylation

suppression with the restoration of AFDN-DT expressions

[Lai et al. (2020)]. Association with brain cancer was es-

tablished in [Gene Atlas]. 2

SLC5A9 0.895 Identified as a hypomethylation promoter gene, it also

functions as a transporter crucial for tumor cells’ survival,

relying on external nutrients for growth [Z. Zhang et al.

(2011); Nwosu et al. (2023)]. In preclinical studies, trans-

porter inhibition exhibits anti-tumor efficacy. However,

many cancer-associated transporters remain poorly char-

acterized and untapped as potential targets for cancer treat-

ment [Nwosu et al. (2023)].

AC005899.6

lncRNAs

0.889 AC005899.7 have been linked to high risk in renal cancer

Hao et al. (2023). Similarly, AC005899.6 has been associ-

ated with gastric cancer [J. Wei et al. (2021)].

UBOX5-

AS1

0.872 lncRNA UBOX5-AS1 is boosted in low oxygen condi-

tions, increasing invasiveness in ovarian endometriosis.

Targeting this gene could be a promising treatment ap-

proach [H. Liu et al. (2021)]. However, no specific func-

tions of UBOX5-AS1 in the brain haven’t been extensively

studied or elucidated.

2https://www.genecards.org/
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TAS2R19 0.866 A bitter-tasting compound. Recent studies have ex-

plored how bitter compounds fight cancer and en-

hance chemotherapy, suggesting their therapeutic poten-

tial. TAS2Rs, linked to drug effectiveness, may be crucial

in cancer treatment. Understanding how TAS2Rs work

with their ligands could lead to better cancer therapies

[Costa et al. (2023)]. Further, it is found as the potential

gene for analysis in the pseudo and actual progression of

Gliomas [Qian et al. (2016)].

AC097537.1

(GPM6A-

DT)

0.864 Targeting the GPM6A gene increases the sensitivity of

glioblastoma stem cells (GBSC) to radiation treatment.

This suggests that inhibiting GPM6A or could be a promis-

ing strategy for glioblastoma treatment, as it could effec-

tively target proliferation, invasion, and radioresistance si-

multaneously [Lacore et al. (2022)].

AC025178.1

lncRNA

0.858 An association between this gene and Bladder cancer

[D. Liu et al. (2022)]

ZDHHC11

[Tang et al.

(2022)]

0.854 Recent findings indicate that ZDHHCs are linked to the

prognosis of tumor patients, although the prognostic roles

of these ZDHHCs may vary between different types of tu-

mors. For instance, high expression of ZDHHC11 is as-

sociated with favorable prognostic features in glioma pa-

tients [Z.-Y. Liu et al. (2023); Tang et al. (2022)].
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TABLE 4.4
The association between genes and the Coarse feature class, with genes identified
as being linked to poor prognosis in glioma patients.

Gene PC Functions

TMEM121 0.794 TMEMs, widely expressed in the brain [National Li-

brary of Medicine-National Center for Biotechnology

Information - Gene: 80757 (2023)], act as membrane

channels for specific substances, yet much of their func-

tion remains elusive due to challenges in isolation and

purification. Notably, high expression of TMEM140 in

gliomas and TMEM97 are implicated in tumor growth

of gliomas [Schmit & Michiels (2018)] has been re-

ported.

Compared

to normal

brain tissues,

PRMT1

0.776 PRMT1 expressions in gliomas are increased. Addi-

tionally, research suggests that in gliomas with a mu-

tation in the IDH1 gene, there is a decrease in PRMT1

expression [S. Wang et al. (2012); Shen et al. (2024);

Lathoria et al. (2023)].

GPX4 0.774 In gliomas, changes in the Xc-system (cellular antioxi-

dant system) and GPX4 activity are detected, indicating

their role in tumor advancement [M. Lu et al. (2022)].

GPX4 could emerge as a novel prognostic indicator in

glioma, significantly associated with glioma cell prolif-

eration, migration, and apoptosis [Zhao et al. (2017)].
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MRPL54 0.767 It contribute to oxidation and cell state regulation.

Numerous studies have highlighted the atypical ex-

pression of MRPs in different tumors. Associa-

tions have been identified between MRPS23, MRPL35,

MRPL42, MRPS2, MRPS12, MRPL34 genes and

gliomas [Huang et al. (2020)].

RUVBL2 0.759 It is involved in chromatin remodeling, DNA damage

repair, and cell cycle regulation, all crucial in cancer.

Additionally, expression of RUVBL2 is considerably

elevated in tumor tissues compared to normal tissues

in lower-grade glioma (LGG)) [Su et al. (2022)].

FAM3A 0.759 Belonging to the FAM3 gene family subgroup, it con-

tributes to the modulation of neuronal apoptosis and

holds potential significance in neurodegenerative disor-

ders [J. Liu et al. (2019)].

SAE1 0.742 It facilitates the advancement of glioma cancer [Y. Yang

et al. (2019); Q. Guo et al. (2023)].

TTC9B 0.736 It is associated with reduced survival in glioma patients

[Gong et al. (2021)].

RPL10 0.731 Ribosomal proteins (RPs) are involved in numerous

pathological processes, particularly tumorigenesis and

cell transformation. High expression of RPS6 is ob-

served in glioblastoma and has been reported in the

study [El Khoury & Nasr (2021)].
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FAM98C 0.725 Although the precise function of FAM98C remains un-

clear, it is believed to be involved in RNA metabolism

and gene expression regulation, with high expression

in the cerebral cortex [Protein Atlas - FAM98C Tissue

Expression (2023)].

TABLE 4.5
The association between genes and the RLNU feature class, with genes identified
as being linked to poor prognosis in glioma patients.

Gene PC Functions

BMP2 0.869 Bone morphogenetic proteins (BMPs), specifically

BMP2, are recognized for their role in promoting differ-

entiation and inhibiting growth in GBM cells [Persano et

al. (2012); C. Liu et al. (2009); Sachdeva et al. (2019)].

GALNT13 0.795 Glycosylation is pivotal in the molecular and cellular

mechanisms underlying tumorigenesis. While glycosyla-

tion has been associated with diverse biological processes

and diseases, its precise role in glioma remains largely

unexplored. GALNT13 has been associated with a better

prognosis in gliomas according to Yang et al. [Y. Yang

et al. (2024)] illustrated in their research that GALNT13

expression was highest in the fetal brain, followed by the

adult cerebellum, cerebral cortex, and whole brain. Inter-

estingly, GALNT13 was exclusively detected in neurob-

lastoma cells and was absent in other cell-lines, including

glioma cells.
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RPL4 0.79 Its expression is increased in gliomas samples than nor-

mal brain [K. Guo et al. (2022)].

TET1 0.773 The gene acts as a tumor suppressor; its downregula-

tion has increased tumor cell proliferation and develop-

ment [Ji et al. (2021)]. low expression of TET1 is related

to poor survival of gliomas patient [Bian et al. (2014)].

Müller et al. highlighted in their study that gliomas with

IDH1 mutations exhibited nuclear aggregation of TET1

[Müller et al. (2012)].

RPL3 0.77 RPL3 might have implications in glioma tumorigenesis

[B. Wei et al. (2020)].

MAPT-

AS1

0.754 It is identified as a lncRNA, has been associated with poor

prognosis in glioma patients [X. Wang et al. (2020)].

SEMA4G 0.749 In LGG gliomas, higher gene expression is associated

with longer survival [Xiao et al. (2020)]. It has tumor

suppressive functions in gliomas [T.-P. Lu et al. (2012)].

TLCD5 0.742 While the gene is widely expressed in the brain [National

Center for Biotechnology Information (2024)], its inves-

tigation about gliomas remains relatively understudied.

AP003071.5 0.739 This lncRNA is relatively underexplored in gliomas but

exhibits high expression in prostate cancer [Che et al.

(2022)].
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EIF4B 0.733 Lowering EIF4B in cancer cells slows proliferation and

enhances their sensitivity to genotoxic stress-induced

apoptosis. The research findings highlight EIF4B as

a potential target for anti-cancer treatment development

[Shahbazian et al. (2010)]. EIF3I and EIF4H have been

recognized as favorable candidates for glioma treatment

[Krassnig et al. (2021)].

For the genes enumerated in Table 4.3, Table 4.4, and Table 4.5, we attempted

to link them to gliomas based on existing studies. In cases where such associa-

tions were not identified, we investigated their direct or indirect involvement in

other cancers because genes associated with the other cancers might also hold

significance in gliomas, given shared or crosstalk biological pathways [H. He et

al. (2021)]. Exploring their functions in alternative contexts can offer valuable

insights into their potential contributions to glioma development and progression.

Moreover, the highly invasive nature of cancer cells constitutes the primary rea-

son for elevated cancer mortality and often facilitates cancer advancement and

metastasis [H. He et al. (2021)]. Therefore, understanding the mechanism behind

the onset and development of malignant tumors is important. Most of the genes

listed in the tables are associated with the poor prognosis of glioma patients, some

of these genes are lncRNAs, which are RNA molecules measuring over 200 nu-

cleotides long and do not encode proteins. Studies have shown that dysregula-

tion of lncRNAs is associated with various diseases, including cancer [Jiang et al.

(2019)]. It exerts clinical therapeutic effects against tumors by inhibiting mRNA
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transcription and binding to protein to block its function [Jiang et al. (2019)].

In gliomas, specific lncRNAs are dysregulated, influencing tumor develop-

ment and progression. These findings indicate that the dysregulation of lncRNA

expression may occur early in tumorigenesis, with these lncRNAs potentially

serving crucial functions in glioma initiation [Shi et al. (2017)]. Hence, although

lncRNAs may not directly encode proteins that affect gliomas, their dysregulation

can still profoundly impact glioma development and progression through indirect

mechanisms. However, RNAs have not been thoroughly and systematically stud-

ied in gliomas [Z. Wang et al. (2020)].

In this study, we identified genes enumerated in Table 4.3 that exhibit a high

positive correlation with the extracted feature class FOK, showcasing similar be-

havior. As discussed, FOK is well-known for capturing tumor heterogeneity, thus

reflecting malignancy. Moreover, studies have suggested that several genes listed

in Table 4.3, Table4.4 and Table 4.5 play pivotal roles in gliomas or other cancers.

It’s essential to highlight that among these genes are those encoding RNA, which

can significantly influence the malignancy of gliomas and contribute to survival

prediction. Hence, this study has emphasized ten specific genes (including RNAs)

that may be critical in indicating tumor malignancy and predicting patient SD.

4.5 Conclusions

We employed versions of the triplanar model to generate segmentation results

consistent with other leading segmentation models. Subsequently, to evaluate the

robustness of the feature set proposed in the study by [Rajput et al. (2023a)], we

extracted a dominant set of 29 features from all these variants to predict the SD
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of the patients. We validated the optimality of these features by examining corre-

lation maps and SRC across all the variants. The trained regressor model demon-

strated superior performance across multiple performance metrics. Specifically,

the ERFR and RFR models trained on Variant4 outperformed other state-of-the-

art BraTS2020 models across multiple performance metrics, signifying the robust

nature of features and predictor models.

The SD results surpassed those of the top-performing models on the BraTS2020

validation set across multiple performance metrics. We analyzed the behavior of

the feature set using multiple post-hoc interpretable methods such as SHAP and

LIME to derive global explanations and PDP and ALE methods to obtain local

explanations. Analyzing the feature set through diverse post-hoc methods such

as SHAP, LIME, PDP, and ALE provides a comprehensive understanding of the

model’s behavior globally and locally. This approach ensures cross-verification,

yielding robust and contextually nuanced insights, enhancing confidence, and al-

lowing for model-agnostic interpretations.

The features are arranged in descending order in the SHAP summary plot,

aligning with the study’s findings by [Rajput et al. (2023a)] when considered

within a broader context. Moreover, the features’ local and global behavioral

patterns are consistent across the respective plots. Notably, first-order statistical

features, age, location-based, and texture features play a crucial role in predic-

tion. Additionally, these interpretability methods provide valuable insights into

the model, offering human-understandable inferences.

We further validated the robustness of the feature set for SD prediction, em-

phasizing the importance of robust segmentation results and regressor models.

Moreover, employing these interpretability tools enables the extraction of human-
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understandable inferences, assisting in the comprehension of ML black-box mod-

els.

Our radiogenomic study incorporated extracted radiomics, location-based fea-

tures, and integrated them with additional clinical information, including age,

to enhance SD prediction. The uncorrelated nature of these features enables

our model to capture diverse information from various data aspects, thereby en-

hancing survival prediction performance. Moreover, reframing the problem as

binary classification, especially given the limited samples, simplified the prob-

lem and improved the model performance. Further, we observed a higher cor-

relation of the extracted features set with gene expressions for a potential link

between radiomic features and genes to comprehend malignancy or heterogene-

ity of tumors at a molecular level. We identified radiomic signatures including

wavelet-HHH firstorder Kurtosis, wavelet-LLH ngtdm Coarseness, and wavelet-

HHH glrlm RunLengthNonUniformity which are strongly associated with genes.

These identified genes are directly or indirectly responsible for tumor malignancy.

These radiomic feature classes could be potential biomarkers for predicting tumor

behavior, potentially highlighting molecular targets for therapeutic interventions

or further investigation.

4.6 Future scope

For SD prediction, clinical data such as age, gender, race, KPS, and treatment in-

formation can be obtained from the TCGA glioblastoma project. This clinical in-

formation has proven to be an essential variable in the prognosis of glioblastoma.

Combining this clinical information with our proposed feature set can further val-
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idate its effectiveness. Moreover, leveraging interpretation tools on this combined

dataset can yield more nuanced insights into the factors influencing survival out-

comes in glioblastoma patients.

Similarly, for radiogenomic analysis, access to a larger dataset can offer a

more robust validation of the relationship between radiomic features extracted

from medical images and gene expression patterns. With a greater diversity of

samples, we can explore a wider range of genomic profiles and their correspond-

ing radiomic signatures. This leads to a deeper understanding of the underlying

biological mechanisms driving tumor progression and response to therapy. This

expanded dataset will enable more comprehensive analyses and enhance the reli-

ability of our findings in the context of radiogenomics.
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Chapter 5

Conclusions and Future Scope

5.1 Conclusions

Accurate and precise brain tumor segmentation and SD prediction of glioblas-

toma patients are among the most challenging and critical tasks in the medical

domain. These tasks are crucial for effective diagnosis and treatment planning.

However, efficient and lightweight networks are crucial for seamless incorpora-

tion into current medical practices. Therefore, we proposed a triplanar attention-

based network that can work in a resource-constrained environment and generate

robust segmentation results. The proposed approach with fewer parameters (al-

most 3× less) demonstrates comparable performance to a 3D model, making it

suitable for brain tumor segmentation in resource-limited settings. We worked on

fusing channel and spatial attention, allowing the model to refine the feature map

across channels and spatially. We proposed an improved CCSAv1 network that

has increased the dice score without much addition to the trainable parameters.

Further, we extracted diverse features for SD prediction encompassing location-
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based, geometric-based, first-order statistical, and texture-based radiomics fea-

tures by applying wavelet and LoG filters. We conducted feature selection and

reduced the dimensionality to 29 features. Utilizing a correlation map and SRC,

we observed that most features are uncorrelated, validating the capture of unique

information from tumor lesions. Subsequently, we employed ensemble learning-

based predictor models trained on this feature set to predict SD. The feature set

extracted from the 3D and triplanar networks consistently performed well for SD

prediction. Notably, the RFR and ERFR models outperformed numerous top-

ranking methods in BraTS2020 on the validation set.

In this study, we undertake another essential task: comprehending the decision-

making process of black-box ML models, which is crucial for establishing trust

between machine learning systems and domain experts. Hence, we utilized vari-

ous post-hoc interpretable tools (SHAP, PDP, LIME, and ALE) to generate visual

explanations, facilitating straightforward and accessible interpretations. We an-

alyzed the behavior of the feature at the generic and local levels (specific to a

particular sample). We observed that the behavior of features remained consis-

tent across different feature values, and the ranking of top-contributing features

remained the same, albeit with some variations in the order for certain moder-

ately contributing features. This approach ensures cross-verification, yielding ro-

bust and contextually nuanced insights, enhancing confidence, and allowing for

model-agnostic interpretations. Across all the tools, we found the dominance of

Age, first-order statistical (interquartile range, kurtosis), location-based feature

(centroid of necrosis, active tumor), and texture-based features (GLCM corr). We

determined the relationship between features, their values, and how they affect the

SD prediction. These tools helped to highlight top-ranking features and show how
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these features impact SD prediction. The explanations obtained from these anal-

yses were then utilized to extract biological significance from the features. The

insights drawn from the visual graphs were consistent with the existing under-

standing in the medical domain.

However, the feature set under investigation primarily comprises radiomic

features renowned for capturing heterogeneity and indicating tumor malignancy

through pixel intensity. However, they have limitations in directly correlating

with tumor malignancy, which is more closely tied to the molecular landscape.

To address this problem, we conducted an analysis linking radiomic features with

gene expression in glioma patients, allowing for direct biological inference. In

this study, we have included additional clinical information that has improved SD

prediction. However, it should be validated further on a larger dataset. The ra-

diogenomic study examined gene expressions with both strong correlations and

those exhibiting uncorrelated characteristics. Further, we observed a higher cor-

relation of the extracted features set with gene expressions for a potential link

between radiomic features and genes to comprehend malignancy or heterogene-

ity of tumors at a molecular level. Further, we observed a higher correlation

of the extracted features set with gene expressions for a potential link between

radiomic features and genes to comprehend malignancy or heterogeneity of tu-

mors at a molecular level. We identified radiomic signatures including wavelet-

HHH firstorder Kurtosis, wavelet-LLH ngtdm Coarseness, and wavelet-HHH glrlm

RunLengthNonUniformity which are strongly associated with genes. These iden-

tified genes are directly or indirectly responsible for tumor malignancy. These

radiomic feature classes could be potential biomarkers for predicting tumor be-

havior, potentially highlighting molecular targets for therapeutic interventions or
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further investigation. Moreover, identifying gene expressions that mimic radiomic

features may lead to discovering biomarkers for predicting tumor behavior, prog-

nosis, or treatment response.

5.2 Future scope

For BTS, there is scope for further improvement and fine-tuning of the proposed

methodology. This could involve refining network architecture and optimizing hy-

perparameters, such as exploring variations of 2D and/or 3D models and methods

based on Graphical Neural Networks. These approaches may offer opportunities

to optimize resource consumption, enhance performance, and broaden the scope

of clinical applicability.

Additionally, integrating Multimodal medical image fusion techniques, which

merge multiple medical modalities into a single image, can enhance the informa-

tion available. Furthermore, incorporating additional post-processing methods,

such as replacing ET lesions with necrotic tissue based on specific cutoff values

determined through experimental analysis, could also be beneficial. Incorporating

functional-imaging techniques (e.g., PET scans and fMRI scans into conventional

MRI can help DNN models learn the physiological, metabolic, and biological de-

tails of tumor lesions, enhancing the discriminating potential of the DNN models.

Explainable AI in the lesser complex models can be made more accessible due to

their simplicity, helping to identify the model’s strengths and weaknesses.

For SD prediction, incorporating clinical data such as age, gender, race, and

treatment information has enhanced SD predicting accuracy, necessitating vali-

dation on larger datasets. Other clinical factors such as performance status and
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comorbidities have also demonstrated their significance in glioblastoma progno-

sis. When combined with our proposed feature set, these variables can further

validate its efficacy. Moreover, including other omics data such as proteomics,

genomics, and metabolomics can enhance predictive accuracy. Moreover, inter-

pretation tools can be subsequently applied to enhanced predictor models trained

on an enriched feature set using ample datasets to comprehend the decisions of

ML models. These will allow for more robust analysis and validation of model

interpretations. Moreover, ample datasets facilitate the identification of genomic

alterations associated with specific radiomic features and tumor characteristics in

radiogenomic analysis.
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Appendix
.1 Supplementary:
.1.1 Supplementary Figures:
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Context Module
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convolution

Upsampling module

Localization module

Segmentation Layer

Sigmoid

Element wise sum

Concatenation 

Upscale
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Figure 1. No-new network architecture and comparison of segmentation outcomes
obtained, (a) the application of the 3D U-Net for BTS, (b) FLAIR modality, (c)
ground truth segmentation, and (d) predicted segmentation, all shown in the axial
view.
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Figure 2. PDP showcasing 29 prominent features.
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Figure 2. PDPs showcasing 29 prominent features: The X-axis represents feature
values of the corresponding features, whereas the Y-axis illustrates the average
rate of change in the feature’s effect on the SD prediction. The vertical bars across
the X-axis depict the data distribution. These visualizations offer insights into
the general trends of feature(s) of interest, on SD prediction, encompassing all
samples.
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Figure 3. Distribution of SHAP values for the dominant features.153
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Figure 3. Distribution of SHAP values for the dominant features.
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(y) (z) (aa)

(ab) (ac)

Figure 3. The feature values of each respective feature are displayed on the X-axis,
while the SHAP values of corresponding instances are displayed on the Y-axis.
The bar plot depicts the distribution of feature values, with each point representing
a sample from the training set. This visualization aids in understanding where the
majority of SHAP feature values lie, the individual impact of instances on target
features, and their distribution. This illustrates the role of these values in defining
important features. Across all SHAP plots, it is observable that the magnitude of
SHAP values decreases with the declining importance of features, from high to
low.

155



Figure 4. KM survival plot illustrating the probability of survival.

The KM estimator evaluates the proportion of patients who have survived a de-

fined duration after receiving treatment or undergoing surgery. It computes event

probabilities over time by dividing the duration into smaller intervals and sub-

sequently recalculating these probabilities to obtain the ultimate estimate. The

survival likelihood is defined in Equation 1:

St+1 = St × ((Ct+1 −Dt+1)/Ct+1) (1)

In this equation, C represents the count of persons at risk, D denotes the count

of deceased persons, and t signifies the time duration. The KM survival plot is

depicted in Figure 4. It provides an accumulative measure, where survival proba-

bilities stay consistent until another patient encounters the risk. From examining

this graph, it’s evident that the chances of survival for older patients are signifi-

cantly reduced. The likelihood of survival shows a nearly linear decline after the

age of 50, followed by an exponential decrease after 70, and significantly dimin-

ishes beyond the age of 80. The KM curve, examination conducted on the age

feature aligns with both the SHAP and PDP assessments, illustrating the expo-
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nential decline in survivability starting around the age of 70.
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Figure 5. The features in all variations have been organized based on their impor-
tance, descending as per the SHAP summary plots. Features highlighted in red
suggest a consistently similar order across all variations.
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Figure 6. The SHAP waterfall plot for the initial ten features illustrates the behav-
ior of a sample from the validation set, a subset of the training set. Here, E[ f (X)]
denotes the expected (mean) value, f (x) denotes the predicted value, and the fea-
tures indicated by the arrow’s direction demonstrate their contribution to either
increasing or decreasing SD.

30 40 50 60 70
Timeline (Age)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rvi

va
l P

rob
ab

ilit
y

Class 0
Class 1

Figure 7. Survival analysis using the KM method for treatment information (clin-
ical information), including both radiation therapy (Class 0) and pharmaceutical
therapy (Class 1). The X-axis represents age, and the Y-axis displays the survival
probability.
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Figure 8. The correlation histogram illustrates the distribution of genes across
various extracted feature categories, with their corresponding PC values.
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Figure 9. Distribution of genes and radiomics, demonstrating uncorrelated behav-
ior between them after thresholding at <= 0.006.
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Figure 10. Distribution of genes and radiomics, demonstrating highly correlated
behavior between them after thresholding at >= 0.7.
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Figure 11. Correlations between genes and top three feature classes: (a) FOK, (b)
Coarse, and (c) RLNU obtained from Figure 4.16 of the Chapter 4. The top three
feature classes were obtained after thresholding at 0.7 where maximum genes fall
under these categories.
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.1.2 Supplementary Tables:

TABLE 1
Details of the dominant features identified through RFE.

Features with their descriptions

Age: The dataset includes information regarding age.

cent-at-y : The centroid of the enhancing tumor along the y-axis

pos-ed-wb-x: The centroid of the enhancing tumor with respect to the brain cen-

troid along the x-axis

original-shape-LeastAxisLength: It computes the smallest axis length of the

ROIs.

Wavelet-LLH-firstorder-Maximum: It assesses the maximum gray intensity

within the ROI after applying the Wavelet LLH-band filter.

Wavelet-LLH-Gldm-DependenceVariance: It computes the variance in the im-

age’s dependence matrix after applying Wavelet LLH-band filter.

Wavelet-LLH-Glrlm-LongRunLowGrayLevel-Emphasis: It quantifies the dis-

tribution of runs of low gray-level intensity values after the application of the

Wavelet-LLH filter.

Wavelet-LHL-Glcm-Correlation: It evaluates the correlation between gray-level

values and their associated voxels in the gray-level co-occurrence matrix after

applying the Wavelet LHL filter.
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Wavelet-LHH-Gldm-DependenceNonUniformityNormalized: It measures the

variability in the distribution of dependencies among voxel pairs with different

gray-level values in an image, after applying Wavelet-LHH band filter.

Wavelet-LHH-Gldm-SmallDependenceHighGrayLevelEmphasis: It highlights

small dependence and high gray-level intensity within the image’s spatial rela-

tionships following the application of the Wavelet-LHH filter.

Wavelet-LHH-Glszm-ZoneEntropy: It measures the variability in the distribution

of connected regions of voxels with the same gray-level value in the image, after

the application of the Wavelet-LHH band filter.

Wavelet-HLL-Glcm-Imc1: computes the Informational Measure of Correlation 1

(IMC1) from the GLCM, which evaluates the level of information shared among

pairs of pixels with varying gray levels, offering insights into both the strength and

direction of their correlation within the image, after the application of Wavelet-

HLL filter.

Wavelet-HLH-firstorder-Kurtosis: It measures the peakedness of the spread of

pixel intensities in the given image after the application Wavelet-HLH filter.

Wavelet-HLH-Gldm-DependenceEntropy: It assesses randomness in the depen-

dencies of an image after the application Wavelet HLH band filter.

Wavelet-HLH-Gldm-SmallDependenceLowGrayLevel-Emphasis: It assesses

the combined distribution of small dependence with higher gray-level values after

applying Wavelet-HLH filter.

Wavelet-HHH-Glcm-MaximumProbability: It finds the most frequently occur-

ring neighboring pair of intensity values from the grey-level co-occurrence matrix

after the application of the Wavelet-HHH filter.
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Wavelet-LLL-Glcm-Correlation: It assesses the association between pairs and

their corresponding voxel intensity value after applying the Wavelet-LLL filter.

LoG-sigma-1-0-mm-3D-Glcm-Correlation: It evaluates the correlation between

pairs and their respective voxel intensity values after applying the LoG filter with

a sigma value of 1.

Wavelet-LLH-Ngtdm-Strength: It measures the local variation in gray-level tran-

sitions within the neighborhood of the image after applying a Wavelet filter using

the LLH band.

LoG-sigma-5-0-mm-3D-Glrlm-RunLengthNonUniformity-Normalized: It as-

sesses the variability in the gray level run lengths in the image, indicating the

diversity of consecutive voxels with the same gray-level value and their lengths in

different directions within the image after the application of LoG filter with sigma

value 5.

LoG-sigma-3-0-mm-3D-Glrlm-RunVariance: It measures variance in the gray-

level run lengths in the image, after applying LoG filter with sigma value 3.

LoG-sigma-2-0-mm-3D-Glcm-ClusterShade: It measures the skewness of the

GLCM, indicating the asymmetry in the distribution of co-occurring gray-level

values within the image, after the application of the LoG filter with sigma value 2.

LoG-sigma-5-0-mm3D-firstorder-TotalEnergy: It quantifies the overall magni-

tude of image intensity values, after the application of the LoG filter with sigma

value 5.
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LoG-sigma-3-0-mm-3D-Glcm-MaximumProbability: It indicates the highest

probability value within the Gray-Level Co-occurrence Matrix, reflecting the most

frequently occurring co-occurring gray-level value pair in the image, after the ap-

plication of LoG filter with sigma value 5.

LoG-sigma-2-0-mm-3D-firstorder-90Percentile: It evaluates the 90th percentile

of intensity values within an image following the application of a LoG filter with

a sigma value of 2

LoG-sigma-2-0-mm-3D-firstorder-Skewness: It computes the asymmetry of in-

tensity value distribution relative to the mean intensity value after applying a LoG

filter with a sigma value of 2.

LoG-sigma-1-0-mm-3D-Glcm-MCC: It evaluates the texture complexity in the

co-occurrence matrix of an image after the application of the LoG filter with sigma

value 1.

Wavelet-LLL-Glszm-SmallAreaEmphasis: It evaluates the number of connected

voxels with identical gray-level intensity values or the dispersion of smaller-sized

zones following the application of the Wavelet-LLL filter.

Wavelet-HLL-Glcm-MCC: It evaluates the texture complexity in the co-

occurrence matrix of an image following the application of the Wavelet-HLL filter.

TABLE 2
The prominent features identified leveraging PI and their corresponding weights
are provided. A cutoff value of 100 is applied to the weights.

Weight Features

1309.94 Age : The dataset includes information regarding age.
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0761.33 LoG-sigma-1-0-mm-3D-glcm-Correlation: It evaluates the correlation

between pairs and their respective voxel intensity values after the appli-

cation of LoG filter with sigma value 1.

0722.95 Wavelet-HHH-Gldm-DependenceVariance: It computes variance in the

image’s dependence matrix after applying the Wavelet-HHH filter.

0678.10 LoG-sigma-4-0-mm-3D-Glcm-JointEntropy: It computes the random-

ness in neighborhood intensity values after the application of LoG filter

with sigma value 4.

0669.58 LoG-sigma-2-0-mm-3D-firstorder-Kurtosis: It computes the peaked-

ness of the intensity distribution of a given image after the application

of LoG filter with sigma value 2.

0558.74 LoG-sigma-2-0-mm-3D-Glrlm-HighGrayLevelRunEmphasis: It mea-

sures the distribution of the higher gray-level values in the image, after

the application of the LoG filter with sigma value 2 .

0555.77 Wavelet-HLH-Gldm-SmallDependenceLowGrayLevelEmphasis: It

measures the spread of small-dependence with lower gray-level values

after applying Wavelet HLH band filter.

0509.37 LoG-sigma-3-0-mm-3D-Gldm-LowGrayLevelEmphasis: It calculates

the dispersion of low gray-level values in the image.

0476.60 cent-ncr-x: centroid of necrosis along the X-axis.

0464.70 Wavelet-LLL-firstorderInterquartileRange: It calculates the intensity

values within the range from the 75th to the 25th percentile of the im-

age, following the application of the Wavelet-LLL filter.
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0444.84 LoG-sigma-4-0-mm-3D-Glcm-ClusterShade: It measures the skewness

of the GLCM, indicating the asymmetry in the distribution of co-

occurring gray-level values within the image, after applying LoG filter

with sigma value 4.

0438.99 Wavelet-LHH-firstorder-RootMeanSquared: It computes the root-

mean-square of the image intensity value after applying the Wavelet-

LHH filter.

0420.35 LoG-sigma-4-0-mm-3D-Glcm-SumAverage: This measure offers un-

derstanding regarding the average gray-level value of pixel pairs that co-

occur in the image, after applying LoG filter with sigma value 4.

0406.08 Wavelet-HHH-Glrlm-RunLengthNonUniformity: It assesses the vari-

ability in the gray level run lengths in the image, indicating the diversity

of consecutive voxels with the same gray-level value and their lengths in

different directions within the image, after the application of the Wavelet-

HHH filter.

0395.63 LoG-sigma-5-0-mm-3D-Glszm-SmallAreaEmphasis: It evaluates the

number of connected voxels with identical gray-level intensity values

or the dispersion of smaller-sized zones, after applying LoG filter with

sigma value 5.

0357.96 Wavelet-LLH-Ngtdm-Coarseness: It assesses the rate of change in the

intensity value between neighboring voxels after applying the Wavelet

LLH filter.
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0357.51 Wavelet-LLH-firstorder-InterquartileRange: It calculates the intensity

values within the range from the 75th to the 25th percentile of the image,

after the application of the Wavelet-LLH filter.

0340.11 cent-at-x: centroid of active tumor along the X-axis.

0314.18 LoG-sigma-4-0-mm-3D-GlszmLargeAreaLowGrayLevelEmphasis.

0282.22 Wavelet-HHH-firstorder-Kurtosis: It assesses the peakedness of the

spread of the image’s intensity values after applying the Wavelet-HHH

filter.

0247.80 Wavelet-HHH-Glcm-DifferenceAverage: It evaluates the concurrent re-

lationships between occurrences of pairings with similar intensity values

and those with differing intensity values following the application of the

Wavelet-HHH filter.

0247.36 cent-wb-x: centroid of whole-tumor brain along the X-axis.

0232.56 LoG-sigma-3-0-mm-3D-firstorder-Energy: It assesses the magnitude of

voxel values in an image after applying LoG filter with sigma value 3.

0229.91 LoG-sigma-1-0-mm-3D-firstorder-Variance: It quantifies the spread of

intensity values around the mean intensity value following the applica-

tion of a LoG filter with a sigma value of 1

0226.71 Wavelet-LHH-firstorder-Kurtosis: It quantifies the peakedness of the

image’s intensity distribution after applying the Wavelet-LHH filter.

0217.80 LoG-sigma-2-0-mm-3D-Glszm-LargeAreaHighGrayLevel-Emphasis:

It quantifies the combined spread of larger size-zones and higher gray

level intensity, after the application of the LoG filter with sigma value 1.
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0183.47 Wavelet-LLH-firstorder-Range: It assesses the distribution of gray-level

intensity values of an image.

0131.10 Wavelet-LHH-Gldm-DependenceEntropy: It assesses randomness in

the dependencies of an image after applying Wavelet LHH band filter.

0118.90 Wavelet-LHL-Glcm-ClusterShade: It measures the skewness of the

GLCM, indicating the asymmetry in the distribution of co-occurring

gray-level values within the image after the application of the Wavelet

LHL band filter.
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TABLE 3
Annotation of features in the correlation matrix.

Serial
No.

Name of feature Feature Type

1 Age Meta-Data
2 cent-at-x Image
3 cent-ncr-x Image
4 cent-wb-x Image
5 LoG-sigma-1-0-mm-3D-FirstorderVariance Radiomics
6 LoG-sigma-1-0-mm-3D-Glcm-Correlation Radiomics
7 LoG-sigma-2-0-mm-3D-FirstorderKurtosis Radiomics
8 LoG-sigma-2-0-mm-3D-Glrlm-

HighGrayLevelRunEmphasis
Radiomics

9 LoG-sigma-2-0-mm-3D-Glszm-
LargeAreaHighGrayLevelEmphasis

Radiomics

10 LoG-sigma-3-0-mm-3D-Firstorder-Energy Radiomics
11 LoG-sigma-3-0-mm-3D-Gldm-

LowGrayLevelEmphasis
Radiomics

12 LoG-sigma-4-0-mm-3D-Glcm-ClusterShade Radiomics
13 LoG-sigma-4-0-mm-3D-Glcm-JointEntropy Radiomics
14 LoG-sigma-4-0-mm-3D-Glcm-SumAverage Radiomics
15 LoG-sigma-4-0-mm-3D-Glszm-

LargeAreaLowGrayLevelEmphasis
Radiomics

16 LoG-sigma-5-0-mm-3D-Glszm-
SmallAreaEmphasis

Radiomics

17 Wavelet-HHH-Firstorder-Kurtosis Radiomics
18 Wavelet-HHH-Glcm-DifferenceAverage Radiomics
19 Wavelet-HHH-Gldm-DependenceVariance Radiomics
20 Wavelet-HHH-Glrlm-RunLengthNonUniformity Radiomics
21 Wavelet-HLH-Gldm-SmallDependence-

LowGrayLevelEmphasis
Radiomics

22 Wavelet-LHH-Firstorder-Kurtosis Radiomics
23 Wavelet-LHH-Firstorder-RootMeanSquared Radiomics
24 Wavelet-LHH-Gldm-DependenceEntropy Radiomics
25 Wavelet-LHL-Glcm-ClusterShade Radiomics
26 Wavelet-LLH-Firstorder-InterquartileRange Radiomics
27 Wavelet-LLH-Firstorder-Range Radiomics
28 Wavelet-LLH-Ngtdm-Coarseness Radiomics
29 Wavelet-LLL-Firstorder-InterquartileRange Radiomics
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TABLE 4
An illustration of computing SHAP values. Consider a feature set (F) = {X, Y,
Z}, and feature’s contribution/values are: c{X} = 8, c{Y} = 10, c{Z} = 9, c{X,
Y} = 18, c{X, Z} = 20, c{Y, Z} = 22 and c{X, Y, Z} = 25.

Possible combinations of feature Marginal Combination

Feature X Feature Y Feature Z

{X, Y, Z} c{X} -φ =8 c{X,Y}-c{X} =10 c{X,Y,Z} -c{X,Y} =7

{X, Z, Y} c{X} -φ =8 c{X,Y,Z} -c{X,Z}=5 c{X,Z} -c{X}=12

{Z, Y, X} c{X,Y,Z} -c{Z,Y} = 25-22 = 3 c{Z,Y} -c{Y} =12 c{Z} -φ=9

{Y, X, Z} c{X,Y} -c{Y} = 8 c{Y} -φ =10 c{X,Y,Z} -c{X,Y} =7

{Z, X, Y} c{X,Z} -c{Z} = 11 c{X,Y,Z} -c{X,Z} =5 c{Z} - φ =9

{Y, Z, X} c{X,Y,Z} -c{Y,Z}=3 c{Y} - φ= 10 c{Y,Z} -c{Y}=12

SHAP value (8+8+8+10+11+3) | 6 = 6.833 (10+5+12+10+5+10) | 6 = 8.667 (7+12+9+7+9+12) | 6 = 9.334
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TABLE 5
Parameters details of SD predictor models.

(a) Training with IMA ground truth GTR samples

Regression
Models

Parameter details

RFR max depth: 6, max features: log2,
min samples leaf: 4, estimators:
45, random state: 0

ExtraRF max depth: 7, max features:
None, min samples leaf’: 8, es-
timators: 50, random state:1

XGBR alpha: 3, eta: 0.1, lambda: 3,
max delta step’: 0, ’max depth’:
3, ’max leaves’: 4, ’min child
weight’: 12

(b) Training with all resection status

Regression
Models

Parameter details

RFR max depth: 6, max features:
None, min samples leaf: 13, es-
timators: 70, random state: 42

ExtraRF max depth: 8, max features:
None, min samples leaf: 7, esti-
mators: 60, random state: 2

XGBR alpha: 1, eta: 0.05, lambda: 5,
max delta step: 0, max depth: 3,
max leaves: 0, min child weight:
3

(c) TGCA samples having clinical information

Regression
Models

Parameter details

RFR max depth: 5, max features: sqrt,
min samples leaf: 2, estimators: 15,
random state: 0

ExtraRF max depth: 3, max features: sqrt,
min samples leaf: 2, estimators: 10,
random state: 5

XGBR alpha: 1, eta: 0.001, lambda: 1, max
delta step: 0, max depth: 6, max
leaves: 15, min child weight: 1

(d) TGCA samples without clinical information

Regression
Models

Parameter details

RFR max depth: 3, max features: sqrt,
min samples leaf: 2, estimators:
15, random state: 0

ExtraRF max depth: 2, max features: None,
min samples leaf: 7, estimators:
15, random state: 5

XGBR alpha: 5, eta: 0.05, lambda: 5,
max delta step: 0, max depth: 3,
max leaves: 0, min child weight: 3

(e) Binary Classification of Survival Days

Classifier Parameter details
RF criterion: gini, max depth: 2, max features: log2, min samples leaf: 5,

estimators: 25, random state: 1
ExtraRF criterion: gini, max depth: 2, max features: log2, min samples leaf: 2,

estimators: 30, random state=1
XGBR alpha: 1, eta: 0.001, lambda: 1, max delta step: 0, max depth: 2, max

leaves: 0, min child weight: 1
Logistic Regressor C:1, penalty: l2, tol: 0.001, solver: liblinear
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Papp, L., Pötsch, N., Grahovac, M., Schmidbauer, V., Woehrer, A., Preusser, M.,

. . . others (2018). Glioma survival prediction with combined analysis of in

vivo 11c-met pet features, ex vivo features, and patient features by supervised

machine learning. Journal of Nuclear Medicine, 59(6), 892–899.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

. . . others (2011). Scikit-learn: Machine learning in python. the Journal of

machine Learning research, 12, 2825–2830.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., . . . Duchesnay, E. (2012). Scikit-learn: Machine learning in python.

arXiv:1201.090.

Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Deep convolutional

neural networks for the segmentation of gliomas in multi-sequence mri. In

Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries:

First international workshop, brainles 2015, held in conjunction with miccai

2015, munich, germany, october 5, 2015, revised selected papers 1 (pp. 131–

143).

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 205



Bibliography

Persano, L., Pistollato, F., Rampazzo, E., Della Puppa, A., Abbadi, S., Frasson,

C., . . . Basso, G. (2012). Bmp2 sensitizes glioblastoma stem-like cells to

temozolomide by affecting hif-1α stability and mgmt expression. Cell death &

disease, 3(10), e412–e412.

Phophalia, A., & Maji, P. (2018). Multimodal brain tumor segmentation using en-

semble of forest method. In Brainlesion: Glioma, multiple sclerosis, stroke and

traumatic brain injuries: Third international workshop, brainles 2017, held in

conjunction with miccai 2017, quebec city, qc, canada, september 14, 2017,

revised selected papers 3 (pp. 159–168).

Protein atlas - fam98c tissue expression. (2023). Online. Retrieved from

https://www.proteinatlas.org/ENSG00000130244-FAM98C/tissue

(Accessed on: April 15, 2024)

Puybareau, E., Tochon, G., Chazalon, J., & Fabrizio, J. (2019). Segmentation of

gliomas and prediction of patient overall survival: A simple and fast procedure.

In A. Crimi, S. Bakas, H. Kuijf, F. Keyvan, M. Reyes, & T. van Walsum (Eds.),

Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries

(pp. 199–209). Cham: Springer International Publishing.

Qian, X., Tan, H., Zhang, J., Liu, K., Yang, T., Wang, M., . . . Zhou, X. (2016).

Identification of biomarkers for pseudo and true progression of gbm based on

radiogenomics study. Oncotarget, 7(34), 55377.

Rajput, S., Agravat, R., Roy, M., & Raval, M. S. (2021). Glioblastoma multiforme

patient survival prediction. arXiv preprint arXiv:2101.10589.

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 206

https://www.proteinatlas.org/ENSG00000130244-FAM98C/tissue


Bibliography

Rajput, S., Agravat, R., Roy, M., & Raval, M. S. (2022). Glioblastoma multiforme

patient survival prediction. In Proceedings of 2021 international conference on

medical imaging and computer-aided diagnosis (micad 2021) medical imaging

and computer-aided diagnosis (pp. 47–58).

Rajput, S., Kapdi, R., Raval, M., & Roy, M. (2023b). Multi-view brain tumor

segmentation (mvbts): An ensemble of planar and triplanar attention unets.

Turkish Journal of Electrical Engineering and Computer Sciences, 31(6), 908–

927.

Rajput, S., Kapdi, R., Roy, M., & Raval, M. S. (2024). A triplanar ensemble

model for brain tumor segmentation with volumetric multiparametric magnetic

resonance images. Healthcare Analytics, 100307.

Rajput, S., Kapdi, R. A., Raval, M. S., & Roy, M. (2023a). Interpretable machine

learning model to predict survival days of malignant brain tumor patients. Ma-

chine Learning: Science and Technology, 4(2), 025025.

Rajput, S., Kapdi, R. A., Raval, M. S., Roy, M., & Bhalodiya, J. M. (2024).

Deriving and interpreting robust features for survival prediction of brain tu-

mor patients. International Journal of Imaging Systems and Technology, 34(3),

e23105.

Ramteke, R., & Monali, K. Y. (2012). Automatic medical image classification

and abnormality detection using k-nearest neighbour. International Journal of

Advanced Computer Research, 2(4), 190.

Ratan, R., Sharma, S., & Sharma, S. (2009). Multiparameter segmentation and

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 207



Bibliography

quantization of brain tumor from mri images. Indian Journal of Science and

Technology, 2(2), 11–15.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016a). ”why should I trust you?”:

Explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining,

san francisco, ca, usa, august 13-17, 2016 (pp. 1135–1144).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016b). ” why should i trust you?”

explaining the predictions of any classifier. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining (pp.

1135–1144).

Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A. G., &

Bellomi, M. (2018). Radiomics: the facts and the challenges of image analysis.

European radiology experimental, 2(1), 1–8.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional net-

works for biomedical image segmentation. In Medical image computing and

computer-assisted intervention–miccai 2015: 18th international conference,

munich, germany, october 5-9, 2015, proceedings, part iii 18 (pp. 234–241).

Roy, A. G., Navab, N., & Wachinger, C. (2018). Concurrent spatial and chan-

nel ‘squeeze & excitation’in fully convolutional networks. In Medical image

computing and computer assisted intervention–miccai 2018: 21st international

conference, granada, spain, september 16-20, 2018, proceedings, part i (pp.

421–429).

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 208



Bibliography

Rozemberczki, B., Watson, L., Bayer, P., Yang, H.-T., Kiss, O., Nilsson, S., &

Sarkar, R. (2022). The shapley value in machine learning. arXiv preprint

arXiv:2202.05594.

Sachdeva, R., Wu, M., Johnson, K., Kim, H., Celebre, A., Shahzad, U., . . . oth-

ers (2019). Bmp signaling mediates glioma stem cell quiescence and confers

treatment resistance in glioblastoma. Scientific reports, 9(1), 14569.

Salman, Y., Assal, M., Badawi, A., Alian, S., & El-Bayome, M. E.-M. (2006).

Validation techniques for quantitative brain tumors measurements. In 2005 ieee

engineering in medicine and biology 27th annual conference (pp. 7048–7051).

Sandabad, S., Benba, A., Tahri, Y. S., & Hammouch, A. (2016). Novel extrac-

tion and tumour detection method using histogram study and svm classification.

International Journal of Signal and Imaging Systems Engineering, 9(4-5), 202–

208.

Sanghani, P., Ang, B. T., King, N. K. K., & Ren, H. (2018). Overall survival pre-

diction in glioblastoma multiforme patients from volumetric, shape and texture

features using machine learning. Surgical oncology, 27(4), 709–714.

Schmit, K., & Michiels, C. (2018). Tmem proteins in cancer: a review. Frontiers

in pharmacology, 9, 408621.

Shahbazian, D., Parsyan, A., Petroulakis, E., Hershey, J. W., & Sonenberg, N.

(2010). eif4b controls survival and proliferation and is regulated by proto-

oncogenic signaling pathways. Cell cycle, 9(20), 4106–4109.

Shen, S., Zhou, H., Xiao, Z., Zhan, S., Tuo, Y., Chen, D., . . . Wang, J. (2024).

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 209



Bibliography

Prmt1 in human neoplasm: cancer biology and potential therapeutic target. Cell

Communication and Signaling, 22(1), 102.

Shi, J., Dong, B., Cao, J., Mao, Y., Guan, W., Peng, Y., & Wang, S. (2017). Long

non-coding rna in glioma: signaling pathways. Oncotarget, 8(16), 27582.

Singh, S. P., & Urooj, S. (2015). Wavelets: biomedical applications. International

Journal of Biomedical Engineering and Technology, 19(1), 1–25.

Sofie Van Cauter, M., Veraart, J., Sijbers, J., Peeters, R. R., Himmelreich, U.,

De Keyzer, F., . . . others (2012). Gliomas: Diffusion kurtosis mr imaging in

grading1. Radiology, 263, 492–501.

Soltaninejad, M., Pridmore, T., & Pound, M. (2021). Efficient mri brain tumor

segmentation using multi-resolution encoder-decoder networks. In Brainlesion:

Glioma, multiple sclerosis, stroke and traumatic brain injuries: 6th interna-

tional workshop, brainles 2020, held in conjunction with miccai 2020, lima,

peru, october 4, 2020, revised selected papers, part ii 6 (pp. 30–39).

Soni, N., Priya, S., & Bathla, G. (2019). Texture analysis in cerebral gliomas: a

review of the literature. American Journal of Neuroradiology, 40(6), 928–934.

Spyridon (Spyros), B. C. S. (2021). Validation survival leaderboard 2020.

https://www.cbica.upenn.edu/BraTS20//lboardValidationSurvival

.html. (accessed: 2021-06-12)

Steven, A. J., Zhuo, J., & Melhem, E. R. (2014). Diffusion kurtosis imaging: an

emerging technique for evaluating the microstructural environment of the brain.

American journal of roentgenology, 202(1), W26–W33.

PDEU Robust Brain Tumor Segmentation and Overall Survival Prediction 210

https://www.cbica.upenn.edu/BraTS20//lboardValidationSurvival.html
https://www.cbica.upenn.edu/BraTS20//lboardValidationSurvival.html


Bibliography

Strudel, R., Garcia, R., Laptev, I., & Schmid, C. (2021). Segmenter: Trans-

former for semantic segmentation. In Proceedings of the ieee/cvf international

conference on computer vision (pp. 7262–7272).

Su, X., Zheng, G., Gui, Z., Yang, X., Zhang, L., & Pan, F. (2022). A system-

atic analysis reveals the prognostic and immunological role of reptin/ruvbl2 in

human tumors. Frontiers in Genetics, 13, 911223.

Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Jorge Cardoso, M. (2017).

Generalised dice overlap as a deep learning loss function for highly unbalanced

segmentations. In Deep learning in medical image analysis and multimodal

learning for clinical decision support: Third international workshop, dlmia

2017, and 7th international workshop, ml-cds 2017, held in conjunction with
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