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ABSTRACT
Glioblastoma (GBM) is an fatal form of malignant tumor, and patients have a very
low survival tenure. The patient’s survival is very much dependent on the physiol-
ogy of the tumor. However, predicting survival days based on manual inspection of
MRI images is exceedingly difficult and pertain to qualitative error. Alternatively,
an automated method may help the medical professional to diagnose GBM and
to predict the overall survival (OS) days, which can further help expects planning
treatments. In this regard, segmentation of the tumor cells from the whole brain
MRI and OS prediction is very crucial. Researchers can use an end-to-end method,
which can automatic segments tumor using radiological images and further extracts
features to predict survival days accurately. The proposed work predict comparable
OS days with current top performing methods. Furthermore, we observed the role
and impact of dataset on the performance of model. Also, we examined and reason
out the performance impact when targeting survival days prediction as classifica-
tion problem. The accuracy, MSE, Spearman ranking coefficient on the BraTS-2020
training set were 53.8%, 60668.61, 0.754, and on the validation set they were 55.2%,
79826.24, 0.711 respectively. This is consistent with the top performing approaches
in the BraTS-2020 competition on the validation dataset.
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1. Introduction

An automatically generated brain-tumor segmentation and OS prediction of Glioblas-
toma or Glioblastoma-Multiforme (GBM) patients have recently received widespread
attention from the research fraternity due to their critical nature (1). These tasks are
regarded as among the most difficult in the medical domains (2). Accurate delineation
of malignant tumor cells and survival days prediction are crucial and directly impact
the cycle of treatment and post-treatment planning.

GBM is an exceptionally invasive type of brain tumour found in adults with a
highly infiltrative and diffusive nature. MRI has traditionally been the most basic
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imaging technology used to examine these types of cancers due to its non-invasive,
high resolution and contrast nature.

Deep learning-based segmentation methods have consistently outperformed tra-
ditional methods in recent years. Specifically, 3D UNet (3) based approaches have
been proposed to generate robust segmentation results. The Brain Tumor Segmen-
tation (BTS) comprises of dissecting tumor into following regions of interest (ROI):
Enhancing-tumor (ET), Tumor-core (TC) and Whole-tumor (WT). A Dice score (DS)
is used to evaluate segmentation result. DS measures overlapping pixels of predicted
and ground truth maps, whereas Hausdorff-Distance - 95% (HD) determines the 95%
percentile of the distance from the set of points from the predicted map, which is
the closest point from the ground truth. In general, various 3D Unet based single,
cascaded (4) and/or ensemble (2) (5) (4) of multiple models are used for BTS. In the
recent BraTS-2020 (Brain-Tumor segmentation) challenge, Isensee et al. (2) imple-
mented an ensemble of multiple 3D Unet based model for segmenting brain-tumor.
They incorporated region-based training, post-processing, and a wide range of data
augmentation techniques. Further, In BraTS-2021 Luu et al. (5) and Futrega et al. (6)
further enhanced the performance of the model with minimal modifications(2).

The above segmentation techniques suggest that automatic tumor segmentation
is not only highly computation expensive but also extremely challenging problem
due to high variance in shape, structure, location, texture of tumorous tissues,
lack of sufficient standard dataset and an imbalance between tumorous/lesion and
healthy/background areas.

After brain tumor segmentation, survival prediction is another pivot sub-task which
has gained wide attention (7). In comparison to BTS task, it is equally challenging
yet crucial in medical domain. The survival rates of GBM patients are poor, most of
them succumb to death within two years of diagnosis (8). The Overall-survival (OS)
prediction of BraTS competition consists of predicting survival days of tumor patients.
For prediction, various features were extracted from the segmentation-map obtained
from the BTS task and further classifying it into short-term survival (if the survival
days is less than 300 days), mid-term survival (if the survival days is in between 300
and 450 days), and long-term survival (if survival days greater than 450 days).

Since, both the tasks are conjugal in nature, it is essential to develop an end-
to-end model to target both the BTS and OS prediction collectively. Some of the
end-to-end methods are : Huang et al. (7) proposed a V-net based encoder-decoder
architecture with includes Squeeze-and-Excitation and attention module. Further, for
OS prediction various radiomics (such as intensity, texture and wavelet) and deep
CNN features were extracted. Finally, the reduced set of features was used as input to
train random-forest regressor (RFR) model. Ali et al. (9) implemented an ensemble of
both 3D and 2D models for segmentation, while image-based features and radiomics-
based features were extracted from the input images and segmentation result for OS
prediction. Further to reduce dimensions of features and overfitting, recursive feature
elimination (RFE) was performed. At the end, these reduced features set were fed as
input to train a RFR model for predict OS in numbers of days.

Literature review suggests that for OS prediction, geometrical, statistical, location,
and texture features were extracted from each tumor regions. Further, feature selec-
tion was performed on the datasets. They were trained on different regressor – RFR,
Support-Vector Machine (SVM), and Decision-Trees (DT) to predict survival days of
GBM patients’. As discussed priorly that OS prediction is also a difficult task due
various reasons such as: incomplete data of patients, small dataset, less clinical in-
formation on gender, health condition, treatment, capturing biological characteristics,
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and qualitative image properties from radiographic images. Also, when targeting sur-
vival prediction as a classification problem, minor changes in prediction can misclassify
the sample, which will hugely impact the classification accuracy.

The proposed paper used permutation importance (PI) (10) based feature selection
techniques and RFR model for prediction. The OS prediction of the BraTS competi-
tion (11; 12; 13) focuses on predicting survival days and classifying the survival days
into Long-Term, Mid-Term, and Short-Term categories. Here, accuracy and and Spear-
man ranking coefficient (Spearman Ranking) are mainly used to rank and access the
model performance. In the suggested approach, the selected features performance is
comparable to the current state-of-art methods. The following are the paper’s primary
contributions:

• Accurate and comparable OS prediction with current top performing methods,
on validation BraTS-2020 dataset.

• In-depth analysis of the impact of dataset on model performance.
• In-depth analysis of model performance in-terms of OS prediction.
• In-depth performance impact analysis, when mapping survival days prediction
into different categories.

This paper has the following structure: The BraTS dataset is detailed in Section
2, the proposed O.S prediction methodology in Section 3. Section 4 includes the re-
sults and discussions. And at last, the conclusion and future work to enhance the
performance of the proposed methodological approach is presented in Section 5.

2. BraTS-2020 Dataset

The BraTS2020 (11; 12; 13) training dataset comprises of 369 samples images and
meta-data (Age, resection status and survival days) of 236 patients for OS predic-
tion. Whereas validation dataset contains 125 isamples images for segmentation and
meta-data information of 29 sample for OS prediction. All the sample cases have GTR
resection status. There are four MRI modalities in each sample: T1-weighted, con-
trast enhancing (T1-ce), T2-weighted, and (T2-FLAIR), and manually-labelled result.
The class labels of segmentation results are: Label-1 represents Non-enhancing tumor
(NET-ROI) and necrotic tumor (NCR-ROI), label-2 represents edema (ROI), label-4
represents enhancing-tumor (ET-ROI), and label 0 represents background pixels. The
dimensions of each image are : 240× 240× 155 (width, height, and channels).

3. O.S Prediction Methodology

The proposed O.S prediction methodology can be seen in Figure 1.
Since, tumor segmentation is pre-requisite for O.S prediction, we have implemented

a 3D network for segmenting brain tumor, which had U-Net-like architecture (14). It
has the most straightforward architecture and was one of the best-performing segmen-
tation models of the BraTS-2017 challenge. The details about the structure of model
can be found here (14). The dice-scores obtained on the BraTS 2020 training-set are
0.819 for WT, 0.766 for TC, and 0.702 for ET. For validation-set DS are: 0.880(WT),
0.858(TC) and 0.759(ET).

Further, for predicting OS days, we extracted : image, radiomic-based features and
trained Random forest regressor (RFR) model.
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Figure 1.: The diagrammatic representation of the proposed framework for OS predic-
tion.

3.1. Feature-Extraction and Feature-Selection

3.1.1. Feature-Extraction : (15; 16; 17)

Feature-extraction is a method to derive new features space from the original feature
set. We extracted 1265 features which can be categorized into : 1) image-based features
- 39, 2) radiomics-based features using LoG and wavelet filters (18) - 1226. Numbers
beside feature categories show total numbers of features extracted.

Table 1.: Features extraction set

Image-based
features

Shape based features (such as surface area, volume, proportion
of tumor regions..), location based features (centroid of tumor
regions..)

Radiomics fea-
tures

Shape features 3D (such as flatness, elongation..), first-
order statistical features (such as entropy, energy..), gray-level
features (such as gray-level size-zone(GLSZ), gray-level co-
occurrence matrix(GLCM)..)

3.1.2. Feature Selection

The fundamental purpose of feature-selection methods is to identify a subset of input
features that have unique information to distinguish the target feature. We used per-
mutation importance (PI) as feature selection techniques (19) to obtain 29 dominant
features.
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3.2. Regression and Classification Framework

We have trained RF regressor model to predict OS days and RF classifier to classifying
into these three categories (long-term, mid-term and small-term survivor). RFR has
proved to be more successful because of the following reasons: 1. The output prediction
is the mean of the prediction of all the individual trees, and 2. The introduction of
randomness in the growth of the trees and the splitting of the trees (20) reduces
generalized errors and overcomes overfitting. Also, in the studies mentioned in (21),
where the authors assessed 179 different classifiers on 121 different datasets, they
found that RF outperforms all the other classifiers. The datasets also include survival
prediction of breast cancer patients.

We have used only those samples whose resection status is GTR and five cross-
validations to train the model in the training phase. Furthermore, we have used grid
search to find set of optimal hyper-parameters.

4. Results and Discussion

All the results were obtained through BraTS online evaluation platform (22).

4.1. Quantifying Performance of the model

In the dominant feature set obtained through PI (feature selection method), it has
been observed that significant features are based on wavelet filter and the Laplacian
of Gaussian filter. The wavelet transform can capture spatial and global informations
(23). Whereas, LoG filter which is widely used in biomedical image analysis, can
enhance structural or edge information (24).

The accuracy of the RFR model on training are 53.5% and on validation sets are
55.2%, respectively. Table 3 presents the outcomes.

Table 2.: Performance metrics on training and validation BraTS-2020 dataset for OS
prediction.

Dataset-2020 Accuracy MSE Spearman ranking
Training 53.8% 60668.60 0.75
Validation 55.2% 79826.20 0.71

4.2. Evaluation of RFR model for OS prediction

Since the BraTS OS prediction is a classification task, we classified the survival days
from the training dataset into small-term (class 0), mid-term (class 1), long-term (class
2) categories. For short-term survival, the survival days are less than 300 days; for
mid-term survival, the survival days are in between 300 to 450 days; and for long-term
survival, the survival days are more than 450 days. The BraTS dataset don’t include
these categories but only survival days. Figure 2 shows a classification of survival days
into categories and the distribution for the training dataset. The box plots for these
categories are shown in Figure 3.

We can observe from Figure 2, that for small-term category the distribution of
samples are very sparse for e.g. under 50 survival days, there are only two samples
with vast difference in survival days. These can also be justify through the Figure 3
(a), where median survival days for small-term category is 143.5 days. Whereas for
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Figure 2.: Distribution of survival days categories i.e., Small-Term, Mid-Term and
Long-Term from the training dataset. Samples with GTR resection status are plotted.
N = N0+N1+N2 = 36+35+46 = 117, where N0, N1, N2 are the number of samples
in class 0, 1, 2 respectively and the overall number of samples is N .

(a) Box-plot depicts survival days into different
categories

(b) Box-plot for Survival days

Figure 3.: (a) A box-plot showing the distribution of long-term, mid-term and short-
term survival categories. Green line of the whisker shows the median value of the
respective classes. Box in the whisker shows the mean value of the respective classes.
The median value of long-term, mid-term and short-term are 615.5, 353 and 143.5
respectively. (b) A box-plot showing the overall distribution of survival days from
training data.

mid-range samples have even distribution and range value of classification is also less
compare to other two categories. Whereas, sample distribution and range of survival
days without categorisation can be seen in Figure 3 (b). Similarly, observing mean
value of each categories validate the distribution of samples. Hence for the same reason,
the prediction of our model is more accurate for the mid-term category, followed by
small-term and long-term categories. A comparison of the predicted and ground-truth
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survival days for the 30 test samples from the training samples is shown in Figure
4. We recognise that the suggested model exhibits a good degree of generalisation
for survival days ranging from 180 to 950 days. The reason is that 1. The maximum
number of data points of survival days falls in this range (cf. Figure 3(b)). 2. There are
not enough samples to train the model for better approximation in any other range.

Figure 4.: RFR prediction on test samples taken randomly from the training dataset.

The overall accuracy of the OS prediction depends on how accurately the model
predicts survival days for each of the three categories. Figure 5 depicts comparison
plots between predicted and ground-truth survival days for each category to demon-
strate the proposed model’s classification performance. The quantitative evaluation of
the proposed model on all the three categories on the training dataset is shown in
Table 4. The MSE for the prediction of survival days in the small-term, mid-term,
long-term categories are: 52762.20, 10850.27, and 101711.33, respectively. We observe
that MSE is maximum for the long-term survival category compared to other survival
categories. The reason is that for misclassified training samples, the difference between
the predicted and ground-truth survival days is more for the long-term survival cat-
egory compared to the other two categories. Whereas, the obtained accuracy is more
for long-term survival category, followed by mid-term and least for the small-term
survival category. The reasons for that are: 1. Since the sample distribution i.e., range
is more for long term and so is the error margin, it results in the possibility of the
large variation between the predicted and ground-truth falling in the same category.
2. The number of samples is more for long-term category compared to the other two
categories.

Table 3.: Performance metrics on training and validation BraTS-2020 dataset for OS
prediction.

Dataset-2020 Accuracy MSE Spearman ranking

Training 53.80% 60668.60 0.75

Validation 55.20% 79826.20 0.71

Further, to validate the results, we have used receiver operating characteristic
(ROC) curve which is shown in Figure 6. It displays both true-positive rate (TPR)
and false-positive rate (FPR). From the figure, we can observe that the predictability
of the model for the mid-term and long-term survival category is better than short-
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Figure 5.: Comparison plots between predicted and ground-truth survival days for
small-term, mid-term and long-term survival.

term survival, which supports the results we are getting from the RFR regressor. The
area underneath the curve is 0.57 for mid-term and long-term whereas the area for
the small-term is 0.48 which shows our model has a reasonable discriminatory ability
for the mid-term and long-term categories and very little discriminatory capability for
the small-term category. The reason for the lower discriminatory capability is: 1. The
discontinuity in the spread of samples is least for this category. 2. A smaller number
of training samples.

Finally, a performance comparison of the RFR model with top-ranking models of
BraTS-2020 competition on the training and validation datasets has been noted in
Table 5. The performance metrics of the top-ranking models was obtained through
the BraTS validation leaderboard (25).

Our model has shown a robust performance since it has performed significantly
better in all the mentioned evaluation metrics. Also, the training and validation per-

Table 4.: Category-wise performance evaluation on training dataset BraTS-2020 chal-
lenge.

Category Accuracy MSE Spearman ranking
Small-Term 25.00% 052762.20 0.31
Mid-Term 45.70% 010850.30 0.28
Long-Term 82.20% 101711.00 0.75
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Figure 6.: ROC curve to multi-class using RFR classifier model (class-0 Small-Term
survival, class-1 Long-Term survival and class-2 represents Mid-Term survival).

Table 5.: On the training and validation BraTS-2020 dataset, performance was com-
pared to top-ranking models.

Dataset
2020

Team-name Accuracy Mean
squared er-
ror (MSE)

Spearman-
Ranking

Training SCAN (26) NA NA NA

Redneucon (27) 82.20% 55499.71 0.833

COMSATS-MIDL (9) 64.10% 62305.61 0.632

Proposed 53.80% 60668.61 0.754

Validation SCAN (26) 41.40% 098704.65 0.253

Redneucon (27) 52.00% 122515.80 0.130

COMSATS-MIDL (9) 48.30% 105079.40 0.134

Proposed 55.20% 079826.24 0.711

Note: Team names and ranking were taken from BraTS challenge leaderboard (25)
and ranking platform (28).

formance of our model is close to each other, signifying that the model is robust and
generalizing well.

5. Conclusion and Future work

In this work, we proposed an in-depth analysis of the impact of dataset distribution
on the performance of the model. Further, we inspect the performance of model on
each instance and analysed it to reason its impact on instances in-terms of error
margins. Also, we examine the performance of model when targeting O.S prediction
as category problem. We explained the reason for the true-positive and false-positive
classifications of the model. For regression and classification, we have trained random
forest model with the dominant feature set obtained through PI feature selection
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method. This feature selection methods quantified the role of each feature selected and
hence unravelled the reason for performance of the model. This RF regressor model
performed well for mid-term O.S prediction followed by small-term and long-term
whereas RF classifier performed well for long-term and mid-term. The performance
of the model can be increased by: 1. including more location-based features 2. larger
dataset 3. improved segmentation results, which are used for feature extraction.

Acknowledgments

M. Roy acknowledges the seed grant No. ORSP/R&D/PDPU/2019/MR/RO051 of
PDEU (for the computing facility), the core research grant No. CRG/2020/000869 of
the Science and Engineering Research Board (SERB), Govt. of India and the project
grant no GUJCOST/STI/2021−22/3873ofGUJCOST , Govt. of Gujarat, India. M.
S. Raval acknowledges the grant No. GUJCOST/STI/2021−22/3858 of GUJCOST,
Govt. of Gujarat, India.

All authors have read and agreed to the final version of the manuscript.

References

[1] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, and A. Crimi, “arxiv [preprint].
arxiv: 1811.02629,” 2018.

[2] F. Isensee, P. F. Jaeger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnu-net for
brain tumor segmentation,” arXiv preprint arXiv:2011.00848, 2020.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-
cal image segmentation,” in International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

[4] H. Jia, W. Cai, H. Huang, and Y. Xia, “H2nf-net for brain tumor segmentation using
multimodal mr imaging: 2nd place solution to brats challenge 2020 segmentation task,”
arXiv preprint arXiv:2012.15318, 2020.

[5] H. M. Luu and S.-H. Park, “Extending nn-unet for brain tumor segmentation,” in Inter-
national MICCAI Brainlesion Workshop. Springer, 2022, pp. 173–186.

[6] M. Futrega, A. Milesi, M. Marcinkiewicz, and P. Ribalta, “Optimized u-net for brain
tumor segmentation,” in International MICCAI Brainlesion Workshop. Springer, 2022,
pp. 15–29.

[7] H. Huang, W. Zhang, Y. Fang, J. Hong, S. Su, and X. Lai, “Overall survival prediction
for gliomas using a novel compound approach,” Frontiers in Oncology, vol. 11, p. 724191,
2021.

[8] S. Witthayanuwat, M. Pesee, C. Supaadirek, N. Supakalin, K. Thamronganantasakul,
and S. Krusun, “Survival analysis of glioblastoma multiforme,” Asian Pacific journal of
cancer prevention: APJCP, vol. 19, no. 9, p. 2613, 2018.

[9] M. J. Ali, T. Akram, B. R. Hira Saleem, and A. R. Shahid, “Glioma segmentation using
ensemble of 2d/3d u-nets and survival prediction using multiple features fusion.”

[10] M. K. MIT and K. Lopuhin, “permutation importance,” Aug 1965. [Online]. Available:
https://eli5.readthedocs.io/en/latest/blackbox/permutation importance.html

[11] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann,
K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collec-
tions with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1,
pp. 1–13, 2017.

[12] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara,
C. Berger, S. M. Ha, M. Rozycki et al., “Identifying the best machine learning algorithms
for brain tumor segmentation, progression assessment, and overall survival prediction in
the brats challenge,” arXiv preprint arXiv:1811.02629, 2018.

[13] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren,

10



N. Porz, J. Slotboom, R. Wiest et al., “The multimodal brain tumor image segmentation
benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–
2024, 2014.

[14] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “Brain tu-
mor segmentation and radiomics survival prediction: Contribution to the brats 2017 chal-
lenge,” in International MICCAI Brainlesion Workshop. Springer, 2017, pp. 287–297.

[15] X. Feng, Q. Dou, N. Tustison, and C. Meyer, “Brain tumor segmentation with uncer-
tainty estimation and overall survival prediction,” in International MICCAI Brainlesion
Workshop. Springer, 2019, pp. 304–314.

[16] F. Wang, R. Jiang, L. Zheng, C. Meng, and B. Biswal, “3d u-net based brain tumor seg-
mentation and survival days prediction,” in International MICCAI Brainlesion Workshop.
Springer, 2019, pp. 131–141.

[17] M. J. Ali, M. T. Akram, H. Saleem, B. Raza, and A. R. Shahid, “Glioma segmentation
using ensemble of 2d/3d u-nets and survival prediction using multiple features fusion,” in
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer
International Publishing, 2021, pp. 189–199.

[18] J. J. Van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G.
Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. Aerts, “Computational radiomics
system to decode the radiographic phenotype,” Cancer research, vol. 77, no. 21, pp. e104–
e107, 2017.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in python,”
CoRR, vol. abs/1201.0490, 2012.

[20] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, M. S. Lauer et al., “Random survival
forests,” Annals of Applied Statistics, vol. 2, no. 3, pp. 841–860, 2008.

[21] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hundreds
of classifiers to solve real world classification problems?” The journal of machine learning
research, vol. 15, no. 1, pp. 3133–3181, 2014.

[22] “Onlineevaluation,” https://ipp.cbica.upenn.edu/, accessed: 2021-06-12.
[23] S. P. Singh and S. Urooj, “Wavelets: biomedical applications,” International Journal of

Biomedical Engineering and Technology, vol. 19, no. 1, pp. 1–25, 2015.
[24] H. Kong, H. C. Akakin, and S. E. Sarma, “A generalized laplacian of gaussian filter for

blob detection and its applications,” IEEE transactions on cybernetics, vol. 43, no. 6, pp.
1719–1733, 2013.

[25] “Validation survival leaderboard 2020,” https://www.cbica.upenn.edu/BraTS20
//lboardValidationSurvival.html, accessed: 2021-06-12.

[26] R. McKinley, M. Rebsamen, K. Daetwyler, R. Meier, P. Radojewski, and R. Wiest,
“Uncertainty-driven refinement of tumor-core segmentation using 3d-to-2d networks with
label uncertainty,” arXiv preprint arXiv:2012.06436, 2020.
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