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Abstract
Atmospheric correction (AC) is essential for accurate surface reflectance (SR) prediction, as it accounts for distortions in 
reflectance caused by atmospheric elements such as gases, aerosols, and water vapor. AC has diverse applications, includ-
ing environmental monitoring, agricultural assessment, and climate studies. Traditional physics-based models for AC are 
often complex, require extensive calibration, and depend on atmospheric parameters, which can be challenging to obtain. In 
contrast, deep learning (DL) models offer simpler, more flexible, and extensible alternatives that exclusively rely on remote 
sensing satellite data. However, existing DL models for AC typically consider only spatial features, overlooking temporal 
variations in atmospheric conditions that are ucial for enhancing SR prediction accuracy. This paper introduces the Spatio-
Temporal Atmospheric Correction (STAC) model, which integrates both spatial and temporal information to improve SR 
predictions. STAC outperforms the state-of-the-art Season-aware Atmospheric Correction Network (SAAC-Net), achieving 
a 30% reduction in root mean square error (RMSE) across multiple spectral bands. The model’s generalisation ability is 
further demonstrated by evaluating diverse land cover types, where STAC achieved an average RMSE of 0.036, compared to 
0.044 for SAAC-Net. Additionally, an assessment using the radiometric calibration network (RadCalNet) ground-measured 
dataset reveals that STAC achieves a mean relative difference (MRD) of 0.027, significantly outperforming both DL-based 
SAAC-Net (0.083) and physics-based land surface reflectance code (LaSRC) model (0.073). These results underscore the 
importance of incorporating temporal dynamics in DL-based AC models for enhanced atmospheric correction.

Keywords  Atmospheric correction · Deep learning · Satellite images · Surface reflectance · Top of the atmosphere · 
Spatial-temporal features

Introduction

Atmospheric correction (AC) is a critical process in remote 
sensing, essential for removing atmospheric distortions to 
ensure accurate surface reflectance (SR) measurements from 
satellite imagery. In recent years, the demand for medium to 
high-resolution and accurate remote sensing images of SR 
has surged, driven by their increasing use in land monitor-
ing, emergency management, and security applications. To 
be truly effective, remote sensing images must be analysis-
ready data (ARD), meaning they have undergone the nec-
essary corrections for geometric distortions, radiometric 
calibration, atmospheric effects, and cloud masking, mak-
ing them immediately usable without further preprocess-
ing. Entities like Landsat and Sentinel provide ARD, and 
initiatives such as the Committee on Earth Observation 
Satellites (CEOS) (CEOS 2024) aim to standardize ARD 
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for consistent, easy use across applications (Potapov et al. 
2020; Dwyer et al. 2018; Giuliani et al. 2018).

With the growing availability of Earth observation (EO) 
data and demand for ARD, accurate AC is a crucial pre-
processing step in remote sensing (Doxani et al. 2023). The 
reflectance captured by satellites is called top-of-atmosphere 
(TOA) reflectance, which includes the effects of atmospheric 
scattering and absorption caused by various atmospheric 
elements (aerosols, water vapour, and gases). AC retrieves 
radiance values that accurately reflect the Earth’s surface 
properties, known as SR or bottom-of-atmosphere (BOA) 
reflectance. SR is an essential parameter for numerous 
remote sensing applications, including biophysical param-
eters (Kganyago et al. 2021; Parida and Kumari 2021), crop 
type classification (Patel et al. 2023), water quality assess-
ment (Brando and Dekker 2003; Ramaraj and Sivakumar 
2023), climate studies (Saeidi et al. 2023; Angelopoulou 
et al. 2019) and land use and cover change (Verma and 
Raghubanshi 2019; Sabri et al. 2024) enabling accurate 
analysis and interpretation of satellite imagery across vari-
ous domains.

Traditionally, AC relies on physics-based models like 
land surface reflectance code (LaSRC) (Vermote et al. 2016), 
which use radiative transfer calculations. These models are 
computationally intensive and time-consuming, leading to 
the use of Look-Up Tables (LUTs) for faster correction. 
However, constructing LUTs is complex and necessitates 
various atmospheric parameters—such as aerosol optical 
depth (AOD) and column water vapor (CWV)—to retrieve 
SR accurately. This process involves significant approxima-
tions that can introduce biases, particularly when estimat-
ing AOD and CWV. These limitations reduce the accuracy 
and generalisability of physics-based methods, especially in 
diverse environments. Moreover, Physics-based AC mod-
els rely on established relationships between atmospheric 
parameters and satellite observations. However, if these 
relationships change over time, such models do not extend 
and involve significant complexities in understanding atmos-
pheric physics for building computationally accurate and 
efficient models (Kalnay 2003).

Deep learning (DL) has shown great potential in remote 
sensing tasks such as change detection, segmentation, and 
land use classification (Lin et al. 2020; Nijhawan et al. 2019; 
Saxena et al. 2020; Cheng et al. 2023). DL models, including 
convolutional neural networks (CNNs), autoencoders, and 
vision transformers, facilitate spectral, spatial, and temporal 
feature extraction (Gao et al. 2022; Chen et al. 2016; Romero 
et al. 2016; Tarasiou et al. 2023). These models can capture 
complex, non-linear relationships between TOA and BOA 
without relying on ancillary data or atmospheric parameters. 
For example, Duffy et al. (2022) developed a DL-based emu-
lator for the MAIAC model, performing AC of hyperspectral 
images from the advanced Himawari imager (AHI) sensor on 

the Himawari-8 satellite. A more comprehensive approach to 
DL-based AC was given in Shah et al. (2023a). The authors 
proposed an end-to-end DL-based season-aware AC model 
named SAAC-Net with an extensive training dataset encom-
passing six different land covers (LC) of the Indian subconti-
nent. The model has shown promising results and generated 
BOA images that are similar to the reference BOA images.

While these DL models offer improved accuracy and 
computational efficiency over traditional physics-based 
models, they often overlook the temporal variability in 
atmospheric conditions. Over time, nearly every location 
on Earth experiences changes in atmospheric conditions. 
Atmospheric parameters such as AOD and CWV vary 
dynamically over time, creating a dataset shift problem 
for DL models (Shah et al. 2023b). This shift changes the 
relationships between TOA and SR, necessitating varying 
corrections for accurate SR prediction. Current DL mod-
els, including the state-of-the-art SAAC-Net, which utilises 
spatial and seasonal information, do not account for these 
temporal changes, leading to less accurate SR predictions as 
atmospheric conditions evolve.

To address this, we propose a novel DL model called 
Spatio-Temporal Atmospheric Correction (STAC), which 
integrates temporal information in addition to spatial and 
seasonal information to enhance prediction accuracy. To 
our knowledge, no prior research has explored AC using 
DL with spatio-temporal features. STAC incorporates two 
separate streams for spatial and temporal feature extraction, 
given in Fig. 2. “Model architecture and training” section 
provides a detailed description of model architecture. It 
leverages depthwise separable convolution (DSC), time-
distributed convolution (TDC) and optical flow techniques 
to predict SR from TOA images. Optical flow computations 
on TOA images of five consecutive years in STAC capture 
temporal changes in atmospheric conditions, enabling the 
model to adapt and predict SR accurately.

The rest of the paper is organised as follows. “Materi-
als and methods” section details the study area, the dataset, 
and the proposed approach. “Model architecture and train-
ing” section describes the model architecture, experimental 
setup and model training. “Result and discussions” section 
presents performance evaluation metrics and the model’s 
performance assessment. Finally, “Conclusion” section sum-
marises the findings and concludes the paper.

Materials and methods

This section describes the study area, the proposed approach, 
and the datasets used for training, testing, and validation. 
Additionally, it provides details on the Radiometric Calibra-
tion Network (RadCalNet) ground dataset used for perfor-
mance benchmarking.
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Study area

We chose urban land and cropland for training the STAC 
model because of their distinct surface properties and vary-
ing dynamic characteristics. Urban land typically exhib-
its higher reflectivity because of materials like concrete, 
asphalt, and metal, while cropland shows faster temporal 
variability due to changes in crop cycles. Additionally, both 
land types are heavily influenced by human activities: urban 
areas are affected by pollution and construction, whereas 
agricultural practices and crop growth shape croplands. 
These variations provide a robust dataset for training the 
model to handle diverse and evolving surface conditions.

Delhi (urban land; 28.7041◦ N, 77.1025◦ E) and Haryana 
(cropland; 29.0588◦ N, 76.0856◦ E) in India were the study 
areas used to train and test the model. Delhi, situated in 
northern India, experiences a diverse climatic and topo-
graphic landscape. It lies within a transition zone from the 
arid Thar desert in the west to the fertile Gangetic plains 
in the east. The mean annual temperature ranges from 
approximately 25–30 ◦ C, with peak temperatures reaching 
45 ◦ C during summer. Precipitation levels vary significantly, 
with an average yearly rainfall of around 700 mm. Human 
activity and urbanization have transformed considerably its 
natural landscape, increasing pollution and environmental 
challenges. Delhi is considered one of the most polluted cit-
ies in the world (IQAir 2024). According to research, this 
region’s AOD and CWV values have increased significantly 
over the years (Rai et al. 2020; Kumar et al. 2021; Patel and 
Kuttippurath 2022).

Haryana state is a region characterized by diverse climatic 
and topographic features. The mean annual temperature var-
ies across the state, typically from 25 to 30 ◦ C. Precipitation 
levels are relatively low, averaging between 400 and 600 mm 
annually, with variations depending on the specific location 
within the state. The majority of the LC of this region is 
cropland.

Proposed approach

The block diagram of the proposed approach, as shown 
in Fig. 1, outlines the two primary stages of the STAC 
model: pre-processing and model training. The TOA and 
BOA image pairs used in the study are acquired from the 
Landsat-8 Operational Land Imager (OLI) sensor (Roy 
et  al. 2014). The OLI provides geometrically corrected 
and coregistered TOA and BOA image pairs at 30-m spa-
tial and 16-day temporal resolutions. Each image has a 
size of 7681 × 7531 pixels with six spectral bands: Band 2 
(0.45–0.51 μm)—Blue (B), Band 3 (0.53–0.59 μm)—Green 
(G), Band 4 (0.64–0.67 μm)—Red (R), Band 5 (0.85–0.88 μ
m)—Near-Infrared (NIR), Band 6 (1.57–1.65 μm)—Short-
Wave Infrared 1 (SWIR1), and Band 7 (2.11–2.29 μm)—
Short-Wave Infrared 2 (SWIR2). Band 1, the Coastal/Aero-
sol band (0.43–0.45 μm), was excluded from the analysis. 
In Landsat-8, the BOA images are generated from TOA 
images using the LaSRC physics-based AC algorithm (Ver-
mote et al. 2016). The Landsat-8 data used for the study 
were obtained from the United States Geological Survey 

Fig. 1   Block diagram of the proposed approach
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archives (https://​earth​explo​rer.​usgs.​gov, last accessed on 14 
September 2024).

A synthetic seasonal band was added as an additional 
input feature to help the model capture intra-annual sea-
sonal variations. For this study, two distinct seasons in 
India-summer and winter-were considered, while the rainy 
season was excluded due to cloud cover complications. Only 
images with clear atmospheric conditions (less than 15% 
cloud cover) were used for the study. The synthetic season 
band is added as the seventh band in the images, with static 
values of 1 and 0 representing the summer and winter sea-
sons, respectively. This inclusion is crucial because various 
atmospheric parameters, such as AOD and CWV, exhibit 
seasonal variations, affecting the reflectance values (Acha-
rya and Sreekesh 2013; Randel et al. 2001). For instance, a 
previous study demonstrated that the mean TOA reflectance 
difference between summer and winter across different LC 
types is ≈ 0.04 (Shah et al. 2023a).

To enhance computational efficiency, the images were 
processed in patches. Each 7681 × 7531 image was divided 
into non-overlapping patches of 128 × 128 pixels, corre-
sponding to an area of approximately 3.8 km× 3.8 km. This 
patch-based approach makes the data manageable for the 
DL model and ensures that the model effectively captures 
localised spatial information  (Shah et al. 2023a). From 
each image, the 200 most informative patches, each sized 
128 × 128 pixels, were selected based on entropy.

In training, the model inputs the target TOA image for 
the year t ( TOA

t
 ) along with optical flow images that capture 

temporal information. Four optical flow images are com-
puted from TOA images over 5 years; target and past 4 years: 
TOA

t
, TOA

t−1, TOAt−2, TOAt−3, TOAt−4 . This temporal data 
helps the model recognise how atmospheric parameters and 
reflectance change over time, which is critical for accurate 
SR prediction.

The TOA images and the optical flow outputs are fed into 
the deep DL model, STAC, designed to extract spatial and 
temporal features. The model processes these features to pre-
dict the BOA reflectance for the target year t. The predicted 
BOA is then compared with the reference or ground truth 
Landsat-8 BOA image to evaluate the model’s accuracy. 
This comparison provides feedback for model optimization 
via backpropagation, allowing the model to improve con-
tinuously during training.

A comprehensive dataset was constructed meticulously 
to help the model learn intra-annual and inter-annual 
changes. Landsat-8 images of 2014 to 2022 of Delhi and 
Haryana were collected for the summer and winter sea-
sons. For the summer season, most images are from April 
and May; for the Winter season, most are from November 
and December. Keeping images from nearby dates across 
multiple years allows the DL model to learn the change 
in the reflectance values. The details of the train and test 

datasets from the study area with acquisition dates are 
given in Table 1. The training dataset consists of images 
from 2018 to 2021, while images from 2022 are used to 
test the model’s performance.

To check the model’s generalisation capacity, its perfor-
mance is also evaluated in regions other than where it is 
trained. The details of validation data are given in Table 2. 
Six LCs were used: urban land, cropland, deciduous forest, 
evergreen forest, fallow land, and wasteland. It is to be noted 
that the geographical locations representing urban land and 
cropland in the validation dataset given in Table 2 are dif-
ferent from the training set (Table 1).

Comparing SR predictions with actual ground measure-
ments is necessary to validate the accuracy of STAC and 
ensure reliable data for analysis. It helps calibrate estimates 
with real-world conditions, ensuring their credibility. There-
fore, data from the Radiometric Calibration Network (Rad-
CalNet) (Bouvet et al. 2019) were utilised for analysis and 
benchmarking.

RadCalNet ground measurement dataset

RadCalNet, an initiative pioneered by the working group 
on calibration and validation under the CEOS, represents a 
pivotal advancement in satellite calibration and validation. 
This employs automated ground instruments to continuously 
monitor SR measurements and crucial atmospheric param-
eters across diverse RadCalNet sites. Operating at regular 
30-min intervals from 09:00 to 15:00 local time, RadCalNet 
gathers data from 380 to 2500 nm with a spectral resolution 
of 10 nm. This comprehensive dataset facilitates the deriva-
tion of TOA, which is essential for refining and validating 
satellite-based observations, thus enhancing the accuracy 
and reliability of remote sensing applications.

The proposed work uses observations from the La Crau 
( 43.55◦ N, 4.86◦ E) RadCalNet station in southeastern France 
as a reference to validate the model-predicted SR values. La 
Crau features a flat terrain with a dry Mediterranean climate. 
The predominant landscape consists of pebbles with sparse, 
low vegetation cover. To ensure consistency and compara-
bility with the results presented in Doxani et al. (2023), we 
adopted the same observation period from October 2017 
to September 2018. We found four scenes matching the 
RadCalNet measurement and the Landsat-8 capture dates 
(14.11.2017, 30.11.2017, 17.01.2018, 14.09.2018). Addi-
tionally, we collected scenes from the previous 4 years cor-
responding to these dates to provide auxiliary temporal data 
for the STAC model. The RadCalNet reflectance spectra are 
representative of a disk with a radius of 30 ms. Based on the 
spatial resolution of Landsat-8 and the representative region 
of RadCalNet, a 3 × 3 pixel resulting in a 90 m × 90 m region 
of interest is chosen for La Crau.

https://earthexplorer.usgs.gov
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Model architecture and training

This section details the STAC model architecture, explaining 
how spatial and temporal features are extracted and inte-
grated for SR prediction. It also describes the experimental 
setup and the model training process.

Model architecture

The proposed STAC model, as shown in Fig. 2, consists of 
three stages: (1) feature extraction, (2) feature fusion, and 
(3) prediction. In the feature extraction stage, the architec-
ture is divided into two parallel pathways: The spatial and 
temporal channels. The spatial channel is responsible for 
extracting spatial features using depthwise separable con-
volution, while the temporal pathway focuses on extract-
ing temporal features using optical flow computations and 
time-distributed convolution. These two pathways capture 
spatial variations and temporal dynamics, comprehensively 
representing the input data for accurate SR prediction.

The input to the spatial channel is the TOA image of the 
year t ( TOA

t
 ) for which we want to perform AC. The input 

image has dimensions of 128 × 128 × 7, where 128 × 128 
represents the spatial resolution of the image, and 7 refers to 
the number of channels: six spectral bands from Landsat-8 

and one additional synthetic season band. Features are 
extracted from the input image using four DSC layers. DSC 
offers significant advantages over standard convolutions in 
DL architectures (Chollet 2017). By splitting the convo-
lution process into depthwise and pointwise stages, these 
convolutions reduce the number of parameters and com-
putations required, leading to more parameter-efficient and 
computationally efficient models (Kaiser et al. 2017). The 
depthwise stage applies filters independently to each input 
channel, capturing spatial information efficiently, while the 
pointwise stage combines these outputs across channels to 
create rich feature representations. This separation enhances 
the model’s ability to learn diverse and expressive features 
while maintaining computational efficiency (Kaiser et al. 
2017). LeakyReLU is an activation function used in the 
model that maintains a slight, non-zero slope for negative 
inputs, ensuring that neurons remain active and gradients 
flow consistently during training (Maas 2013). This char-
acteristic promotes faster convergence, more stable train-
ing, and improved generalization of DL models. We used 
3 × 3 convolution kernels throughout the model since deeper 
networks with small kernel sizes work well (Simonyan and 
Zisserman 2014).

The temporal pathway is designed to capture changes 
in atmospheric conditions over time using optical flow 

Table 1   Landsat-8 train and test datasets from the study area

The study area shows the location, LC type and Landsat-8 rowpath. Images of years 2018–2021 are used for training, and images of years 2022 
are used for testing

Study area Lat/Lon Acquisition date of target 
images

Acquisition date of images of previous years

Delhi—Urban land 146040 28.7041◦N,
77.1025◦ E

11.05.2018 16.05.2014, 03.05.2015, 21.05.2016, 24.05.2017
05.12.2018 10.12.2014, 13.12.2015, 30.01.2016, 02.12.2017
28.04.2019 03.05.2015, 21.05.2016, 24.05.2017, 11.05.2018
08.12.2019 13.12.2015, 30.01.2016, 02.12.2017, 05.12.2018
26.01.2020 30.01.2016, 02.12.2017, 05.12.2018, 08.12.2019
16.05.2020 21.05.2016, 24.05.2017, 11.05.2018, 28.04.2019
01.04.2021 24.05.2017, 11.05.2018, 28.04.2019, 16.05.2020
29.12.2021 02.12.2017, 05.12.2018, 08.12.2019, 26.01.2020
06.05.2022 11.05.2018, 28.04.2019, 16.05.2020, 01.04.2021
16.12.2022 05.12.2018, 08.12.2019, 26.01.2020, 29.12.2021

Haryana—Crop land 147040 29.0588◦N,
76.0856◦ E

10.01.2018 01.12.2014, 04.12.2015, 22.12.2016, 25.12.2017
31.03.2018 07.05.2014, 26.05.2015, 12.05.2016, 15.05.2017
29.01.2019 04.12.2015, 22.12.2016, 25.12.2017, 10.01.2018
05.05.2019 26.05.2015, 12.05.2016, 15.05.2017, 31.03.2018
07.05.2020 12.05.2016, 15.05.2017, 31.03.2018, 05.05.2019
01.12.2020 22.12.2016, 25.12.2017, 10.01.2018, 29.01.2019
26.05.2021 15.05.2017, 31.03.2018, 05.05.2019, 07.05.2020
20.11.2021 25.12.2017, 10.01.2018, 29.01.2019, 01.12.2020
13.05.2022 31.03.2018, 05.05.2019, 07.05.2020, 26.05.2021
15.12.2022 10.01.2018, 29.01.2019, 01.12.2020, 20.11.2021
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(Horn and Schunck 1981) and TDC. Optical flow is com-
puted between consecutive TOA images over 5 years ( TOA

t
 , 

TOA
t−1 , TOAt−2 , TOAt−3 , TOAt−4 ), capturing the motion 

and temporal evolution of atmospheric parameters such as 
aerosol distribution and water vapour content. Optical flow 
computation estimates the motion of points between two 

Table 2   Validation dataset using Landsat-8 to check generalisation of the STAC​

Study area list location, LC type and Landsat-8 rowpath

Study area Lat/Lon Acquisition dates of target 
images

Acquisition dates of 
images from previous 
years

Ahmedabad, Gujarat—Urban land 148044 23.0225◦ N,
72.5714◦ E

04.05.2022 09.05.2018, 12.05.2019,
14.05.2020, 15.04.2021

30.12.2022 19.12.2018, 22.12.2019,
24.12.2020, 11.12.2021

Jalandhar, Punjab—Crop land 148039 31.3260◦ N,
75.5762◦ E

20.05.2022 25.05.2018, 29.05.2019,
12.04.2020, 17.05.2021

14.12.2022 03.12.2018, 06.12.2019,
08.12.2020, 11.12.2021

Sukma, Chhattisgadh—Deciduous Forest 142045 18.3909◦ N,
81.6588◦ E

02.05.2022 15.05.2018, 18.05.2019,
04.05.2020, 07.05.2021

20.12.2022 25.12.2018, 28.12.2019,
30.12.2020, 17.12.2021

Tamenglong, Manipur—Evergreen Forest 135043 24.9898◦ N,
93.5012◦ E

22.03.2022 28.04.2018, 30.03.2019,
01.04.2020, 19.03.2021

03.12.2022 08.12.2018, 11.12.2019,
29.12.2020, 16.12.2021

Bikaner, Rajasthan—Fallow Land 149041 28.0229◦ N,
73.3119◦ E

19.05.2022 30.04.2018, 03.05.2019,
05.05.2020, 24.05.2021

21.12.2022 26.12.2018, 29.12.2019,
15.12.2020, 18.12.2021

Jaisalmer, Rajasthan—Waste Land 150041 26.9157◦ N,
70.9083◦ E

18.05.2022 23.05.2018, 10.05.2019,
12.05.2020, 15.05.2021

12.12.2022 17.12.2018, 04.12.2019,
06.12.2020, 09.12.2021

Fig. 2   Architecture of the proposed model—STAC having three stages. 1. Feature Extraction: Spatial and Temporal channels, 2. Feature Fusion: 
Stacking element S, 3. Prediction: Convolution and Relu units after stacking element S and addition operator
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consecutive images, generating spatial and temporal gradi-
ents. By generating four optical flow images, we encapsu-
lated the transformation and evolution of the atmosphere 
over 5 years, providing a dynamic view of temporal changes.

To process the optical flow images, TDCs (Mao et al. 
2022) are applied. TDC applies convolutional layers inde-
pendently to each optical flow image in the time series, 
preserving the temporal structure while extracting spatial 
features at each time step. TDC enables the model to manage 
temporal dependencies across consecutive years by sharing 
weights along the temporal dimension. This ensures that the 
same spatial features are extracted consistently from each 
time step, enabling the model to learn how atmospheric con-
ditions change over time. To increase the model’s capacity 
to learn complex temporal patterns, TDC is applied twice, 
progressively increasing the depth from 7 to 64 and then to 
128. This gradual increase in depth allows the model to cap-
ture more detailed temporal features while balancing model 
complexity and overfitting. Experiments showed that further 
increasing the depth to 256 did not yield significant perfor-
mance improvements, indicating that the chosen configura-
tion (64 and 128 filters) provides optimal performance.

The output after the second TDC comprised four 
data cubes, each with dimensions 128 (height) ×  128 
(width) × 128 (depth). A max-pooling operation is then 
applied to these cubes, selecting the most relevant features 
and reducing noise, resulting in a single data cube. This 
operation also helps reduce computational complexity while 
preserving key spatial and temporal features.

In the feature fusion stage, the spatial and temporal fea-
tures are combined. The spatial and temporal channels’ out-
puts are stacked to create a unified feature representation. By 
fusing spatial and temporal information, the STAC model 
can simultaneously account for both spatial variations and 
temporal changes. Finally, in the prediction stage, the fused 
features undergo three convolutional layers with LeakyReLU 
activation to refine the feature set. An addition operator is 
then applied to combine the input TOA features with the 
final output, which serves as a residual connection, allowing 
the model to retain essential input information. The output 
of this stage is a BOA image of year t ( BOA

t
 ), representing 

the predicted SR.

Model training

The experimental configuration utilized a workstation with 
a 16GB GPU powered by an ×86-based Intel processor with 
NVIDIA Pascal architecture (P5000-6000). A patch size of 
128 × 128 was chosen to balance spatial coverage and com-
putational complexity. This decision was motivated by the 
understanding that increasing the patch size would result 
in a quadratic rise in the number of parameters, leading to 
higher memory demands. We maintained a learning rate of 

0.001 throughout the training process, employed the L2 loss 
function, and utilized the ADAM optimizer with �1 = 0.9 
and �2 = 0.999 values for improved convergence speed and 
stability. The entire code was implemented in Python, lever-
aging the Keras and TensorFlow open-source libraries.

The training process involved utilising urban and crop-
land regions of India (refer to Table 1). Images from 2018 
to 2021 were utilized to facilitate model training. From 
each image, the 200 most informative patches, each sized at 
128 × 128 pixels, were selected based on entropy, resulting 
in 3200 patches for training. Images of the year 2022 (refer 
to Table 1) were used for testing, and a total of 800 patches 
were used. Furthermore, to validate the model’s generali-
sation ability, a comprehensive evaluation was conducted 
across six diverse LC types-urban areas, croplands, decidu-
ous forests, evergreen forests, fallow lands, and wastelands-
using two images for each type, totalling twelve images 
(refer to Table 2). From each image, 200 patches were 
selected, leading to 2400 image patches for validation. The 
results of this evaluation are discussed in the next section.

Result and discussions

This section outlines the metrics used to assess the model’s 
performance and discusses the results obtained from the test, 
validation, and RadCalNet ground measurement data.

Evaluation metrics

In our study, we conducted statistical analyses and computed 
the root mean square error (RMSE) and correlation coeffi-
cient (CC) to evaluate the performance in estimating surface 
reflectance. These two are widely used statistical metrics for 
assessing the accuracy and consistency of model predictions 
against reference data. Lower RMSE (ideal 0) and higher CC 
(ideal 1) represent better predictions.

RMSE was used to quantify the statistical deviation 
between the SR values predicted by the model and those 
derived from Landsat-8 LaSRC. It is a reliable metric for 
assessing accuracy, offering straightforward interpretation 
and potential enhancements. The RMSE is calculated as 
below.

RMSE� is the RMSE value between the SR values pre-
dicted by the model and those derived from Landsat-8 
LaSRC for band � , n� is the number of pixels in band � , Δ�

i,� 
is the difference of model predicted SR values and Landsat-8 
LaSRC SR values defined as below equation.

(1)RMSE� =

�

∑n�

i=1
(Δ�

i,�)
2

n�

.
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where ̂𝜌
i,𝜆 is the model predicted SR and �

i,� is the Landsat-8 
LaSRC SR for pixel i in band �.

A correlation coefficient was used to gauge the linear 
relationship between the SR values obtained from model 
predictions and those derived from reference images. This 
metric served as a measure of similarity, indicating the spa-
tial consistency of our proposed model. By assessing the 
correlation coefficient, we gained valuable insights into 
the degree of agreement between the predicted reflectance 
values and the reference data, providing a comprehensive 
assessment of our approach’s performance and spatial fidel-
ity. The CC is calculated as below.

CC� is the correlation coefficient between the Landsat-8 
BOA image and the model-predicted BOA image for band � . 
��,� and ̂𝜇𝜌,𝜆 are the mean SR of Landsat-8 BOA image and 
model predicted image for band � respectively.

Model assessment—test dataset

In this section, we evaluate the performance of the STAC 
model on the test dataset (ref. Table 1) by analysing RMSE 
and CC across all spectral bands. Furthermore, we conduct 
a comparative analysis with the state-of-the-art SAAC-Net 
model (Shah et al. 2023a) to demonstrate the effectiveness 
of the proposed STAC model in SR prediction.

Table 3 provides a comparative analysis of the per-
formance of the proposed STAC model against the state-
of-the-art SAAC-Net model. Particularly notable are the 
improvements in the green, red, NIR, and SWIR bands. 
The most substantial improvements in RMSE are observed 
in the red and NIR bands, both showing a 50% reduc-
tion, which is particularly relevant for applications like 

(2)Δ𝜌
i,𝜆 = ̂𝜌

i,𝜆 − 𝜌
i,𝜆

(3)CC𝜆 =

∑n

i=1
(𝜌

i,𝜆 − 𝜇𝜌,𝜆)( ̂𝜌
i,𝜆 − ̂𝜇𝜌,𝜆)

�

∑n

i=1
(𝜌

i,𝜆 − 𝜇𝜌,𝜆)
2

�

∑n

i=1
( ̂𝜌

i,𝜆 − ̂𝜇𝜌,𝜆)
2

.

vegetation monitoring, where these bands are critical for 
deriving indices such as the Normalized Difference Veg-
etation Index (NDVI). No improvement was observed in 
the blue band, where both models achieved an identical 
RMSE of 0.01. This suggests that while STAC is more 
effective in most spectral bands, both models face similar 
challenges in correcting atmospheric effects in the blue 
spectral region, where shorter wavelengths are more sus-
ceptible to scattering. Despite this, the STAC model dem-
onstrates impressive performance, achieving an approxi-
mate 30% reduction in RMSE across all bands, with an 
average RMSE of 0.017 compared to SAAC-Net’s 0.024.

The STAC model also consistently outperforms 
SAAC-Net regarding CC, with higher values across all 
spectral bands, demonstrating a stronger linear relation-
ship between predicted and reference SR values. This 
indicates that the STAC model can better maintain spatial 
consistency and produce SR predictions that align more 
closely with reference data. Notably, in the SWIR2 band, 
the STAC model achieves a CC of 0.92, a marked improve-
ment over SAAC-Net’s CC of 0.73, further demonstrating 
the robustness of STAC in handling longer wavelength 
bands, which are often more sensitive to atmospheric 
variability.

Figure 3 compares the STAC and SAAC-Net models on 
a single 128 × 128 image patch of the urban LC (147040) 
using Landsat-8 data across different spectral bands. The 
predicted SR images generated by STAC exhibit closer 
visual alignment with the reference BOA images across all 
spectral bands than those generated by SAAC-Net. In par-
ticular, the STAC model better preserves fine spatial details 
and surface features, especially in the SWIR bands, where 
atmospheric distortions are typically more challenging to 
correct. The SAAC-Net model, by contrast, introduces more 
noise and exhibits less spatial fidelity, particularly in the NIR 
and SWIR bands, where its predictions are less consistent 
with the reference BOA images. This discrepancy can be 
attributed to SAAC-Net’s reliance on a single TOA input, 
limiting its ability to adapt to temporal variations in atmos-
pheric conditions. The RMSE values for the STAC-predicted 
images demonstrate better accuracy, with respective values 
of 0.012, 0.008, 0.006, 0.017, 0.016, and 0.013 for blue(B), 
green(G), red(R), NIR, SWIR1(S1), and SWIR2(S2) bands. 
In contrast, the RMSE values for SAAC-Net predictions are 
slightly higher: 0.008, 0.009, 0.011, 0.023, 0.026 and 0.020, 
respectively. The CC values further support this observa-
tion, as the STAC model achieves coefficients of 0.88(B), 
0.96(G), 0.98(R), 0.94(NIR), 0.95(S1), and 0.97(S2) across 
the bands, indicating strong spatial consistency and agree-
ment with Landsat-8 BOA images. Conversely, SAAC-Net 
exhibits lower coefficients, 0.88, 0.86, 0.90, 0.84, 0.88 and 
0.92 across bands, suggesting less spatial agreement with 
the reference data.

Table 3   Band-wise performance of proposed STAC on test dataset 
(ref. Table 1) and comparison with SAAC-Net

Bands STAC​ SAAC-Net % Improve-
ment in 
RMSERMSE CC RMSE CC

Blue 0.01 0.78 0.01 0.75 0
Green 0.009 0.91 0.016 0.7 43
Red 0.01 0.94 0.02 0.77 50
NIR 0.022 0.85 0.044 0.54 50
SWIR1 0.023 0.88 0.047 0.62 51
SWIR2 0.02 0.92 0.037 0.73 45
Average 0.017 0.88 0.024 0.68 30
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Model assessment—validation dataset

The generalisation ability of the STAC was assessed by 
evaluation of its performance across six LCs: urban land, 
cropland, deciduous forest, evergreen forest, fallow land, 
and wasteland (ref. Table 2), based on the International 
Geosphere-Biosphere Programme’s global vegetation clas-
sification scheme (Loveland and Belward 1997). Given the 
diverse terrains and associated spectral signatures, these 
LC types offer a comprehensive test for the robustness 
of the model. The results of this experiment are given in 
Table 4.

The results presented in Table 4 indicate that the STAC 
model consistently outperforms SAAC-Net, achieving lower 
RMSE values across all LCs except for cropland, where both 
models perform equally. The most substantial improvements 
are seen in the wasteland, where STAC reduces RMSE by 
38%, and fallow land, where the reduction reaches 26%. 
The wasteland and fallow land classes typically experience 
substantial atmospheric and environmental changes due to 
sparse vegetation and varying albedo, making them chal-
lenging for SR prediction models. STAC’s ability to reduce 
errors in these classes highlights its robustness in handling 
dynamic surface conditions.

The absence of improvement in RMSE was noted for the 
cropland LC, where both the STAC and SAAC-Net mod-
els produced identical values. This result may indicate that 
cropland, with its repetitive crop cycles and relatively stable 
atmospheric conditions during the study period, does not 
present as many challenges in terms of temporal variability, 

Fig. 3   The first row shows 
Landsat-8 TOA images (a–f), 
the second row shows Landsat-8 
BOA images (g–l), the third row 
shows STAC predicted images 
(m–r), Fourth row shows 
SAAC-Net predicted images 
(s–x) for urban land LC 147,040 
for each band in order from left 
to right—Blue, Green, Red, 
NIR, SWIR1, SWIR2

Table 4   Performance of proposed STAC on validation dataset (ref. 
Table 2) with six LCs and comparison with SAAC-Net. Note that the 
model is trained only on two LCs - urban and cropland

LC—Types STAC​ SAAC-Net % 
Improve-
ment in 
RMSE

RMSE CC RMSE CC

Urban land—148044 0.027 0.99 0.034 0.96 20
Crop land—148039 0.032 0.95 0.032 0.94 0
Deciduous Forest 

—142045
0.073 0.96 0.088 0.99 17

Evergreen For-
est—135043

0.035 0.99 0.039 0.98 10

Fallow land—149041 0.031 0.98 0.042 0.94 26
Waste land—150041 0.021 0.99 0.034 0.90 38
Average 0.036 0.98 0.044 0.95 20
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thereby reducing the advantage of incorporating temporal 
features. Overall, the average RMSE of STAC model across 
all LCs is 0.036, compared to 0.044 for SAAC-Net, repre-
senting almost 20%

In addition to the improvements in RMSE, STAC also 
demonstrates higher CC across most LC types. In the urban 
land category, STAC achieves a CC of 0.99, compared to 
0.96 for SAAC-Net, indicating a nearly perfect correlation 
between predicted and reference SR values. This level of 
accuracy is critical in urban environments, where complex 
surface materials and atmospheric pollutants can create sig-
nificant challenges for accurate SR estimation. Similarly, 
STAC achieves a near-perfect CC of 0.99 for wasteland, 
compared to SAAC-Net’s CC of 0.90.

Overall, the results from Table 4 demonstrate the gen-
eralization capability of the STAC model, as it shows sub-
stantial improvements in RMSE and CC across multiple LC 
types. The model’s ability to adapt to diverse environmental 
conditions and maintain high levels of accuracy emphasizes 
the importance of integrating spatio-temporal features into 
deep learning-based AC models.

Model benchmarking—ground RadCalNet dataset

This section presents a comparison between the STAC, 
SAAC-Net, and Landsat-8 LaSRC AC models using the 
mean relative difference (MRD) and standard deviation of 
the relative differences, respectively, when compared to 
ground measurements from the RadCalNet site at La Crau, 
France. This experiment evaluates how well the predicted 
SR values from the models align with actual ground meas-
urements, offering insights into each model’s accuracy and 
consistency across various spectral bands. The predicted SR 
values generated by the model were averaged across desig-
nated areas per site and their spatial resolution. The mean 
relative difference (MRD) is calculated as below.

Here, �Model is the average SR value obtained by the 
STAC/SAAC-Net/LaSRC model and the �RadCalNet is the 
average SR value obtained by the RadCalNet. Four scenes 
of LaCrau are used for this purpose.

Figure  4 illustrates the MRD between the predicted 
SR values from the three models (STAC, SAAC-Net and 
LaSRC) and the reference RadCalNet data across six spectral 
bands. The results demonstrate that the STAC model outper-
forms both SAAC-Net and LaSRC in most bands, achiev-
ing lower MRD values across the spectrum. The STAC 
model’s MRD are 0.003(B), 0.012(G), 0.01(R), 0.01(NIR), 
0.013(S1), and 0.1(S2) for the different bands respectively 
whereas for SAAC-Net they are 0.10(B), 0.07(G), 0.003(R), 

(4)MRD =
�Model − �RadCalNet

�RadCalNet
.

0.10(NIR), 0.048(S1), 0.16(S2) and for LaSRC they are 
0.08(B), 0.02(G), 0.03(R), 0.02(NIR), 0.07(S1) and 0.19 
(S2). The STAC model’s MRD is particularly low in the 
blue(B), green(G), and NIR bands, indicating minimal devi-
ation from the reference data. In comparison, SAAC-Net 
shows significantly higher MRD values, especially in the 
blue(B) and NIR bands. At the same time, LaSRC exhibits 
moderate errors in most bands, with particularly high MRD 
in the SWIR2 band. Figure 4 shows that the STAC model 
overestimates SR, with exceptions observed in the green and 
NIR bands. The SAAC-Net underestimates SR in Green, 
Red and NIR bands. The LaSRC demonstrates underestima-
tion in bands blue, green, and NIR while overestimating in 
other bands. The STAC model’s overall mean MRD across 
all bands is 0.027, which represents a 67% reduction com-
pared to SAAC-Net (0.083) and a 63% reduction compared 
to LaSRC (0.073). This substantial reduction in MRD under-
scores the effectiveness of the STAC model in producing SR 
predictions that are more closely aligned with RadCalNet 
ground measurements.

We also note that the MRD values of the STAC model 
are consistently lower than those of all other models 
tested in Doxani et al. (2023), except the SWIR2 band. 
The MRD values for STAC are significantly lower than 
the approximate MRD values obtained in Doxani et al. 
(2023) for ATCOR (Richter and Schläpfer 2019), a state-
of-the-art physics-based atmospheric correction (AC) 
model. The corresponding MRD values for ATCOR are 
0.02 (B), 0.06 (G), 0.08 (R), 0.07 (NIR), 0.04 (S1), and 
0.05 (S2). This indicates the superior performance and 
accuracy of the STAC model in estimating SR across 
all spectral bands compared to traditional models like 

Fig. 4   Mean relative differences between the RadCalNet and model 
predicted SRs per band for LaCrau (France) site. X-axis: Landsat-8 
spectral bands, Y-axis: Mean of relative difference. The minus sign 
(−) over the bars refers to underestimation in predictions by the 
model
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ATCOR. This comprehensive validation process provides 
valuable insights into the performance of STAC relative to 
established state-of-the-art AC models, assessed in Doxani 
et al. (2023).

Figure 5 further evaluates the models by displaying the 
standard deviation of the relative differences between the 
predicted SR values and the RadCalNet measurements. 
The STAC model exhibits lower standard deviations across 
most bands, indicating more excellent stability and consist-
ency in its predictions. Notably, the standard deviation for 
STAC in the blue band is relatively higher (0.3 to 0.4) than 
the other bands, suggesting that the blue spectral region 
remains challenging due to atmospheric scattering effects. 
However, even in the blue band, STAC outperforms both 
SAAC-Net and LaSRC, showing higher variability levels 
in their predictions. For the remaining bands, particularly 
in the short-wave infrared (SWIR) region, the STAC model 
significantly outperforms both SAAC-Net and LaSRC, 
with lower standard deviations indicating more consistent 
predictions. The STAC model demonstrates lower MRD 
than LaSRC, primarily due to its use of temporal data. In 
contrast, the physics-based LaSRC model does not incor-
porate temporal information and relies solely on instanta-
neous atmospheric conditions for correction. Additionally, 
LaSRC depends on atmospheric parameters such as AOD 
and CWV, which need to be estimated. Any inaccuracies 
in estimating these parameters can propagate errors in SR 
prediction, further highlighting the advantage of STAC’s 
temporal feature integration.

Conclusion

In conclusion, this study presents the Spatio-Temporal 
Atmospheric Correction model, a novel deep learning 
framework designed to improve SR prediction in remote 
sensing by incorporating both spatial and temporal infor-
mation. The model’s integration of DSC, optical flow 
and TDC enables it to capture the complex atmospheric 
dynamics that occur over time, which traditional models 
fail to address. Incorporating auxiliary data from previ-
ous years enables STAC to adapt to temporal variations in 
atmospheric conditions, improving accuracy compared to 
the existing DL-model SAAC-Net. Across various spectral 
bands, STAC consistently outperforms SAAC-Net, achiev-
ing an average reduction in RMSE of 30%, with improve-
ments of up to 50% in critical bands such as red and NIR, 
which are essential for vegetation monitoring and other 
applications. Furthermore, the model’s performance on 
diverse LC types shows that STAC generalizes well, reduc-
ing RMSE by as much as 38% in challenging environments 
such as wastelands. The validation using the RadCalNet 
ground-measured dataset further reinforces the robustness 
and accuracy of STAC, where it exhibits a MRD that is 
67% lower than SAAC-Net and 63% lower than LaSRC. 
These findings emphasise the importance of integrating 
spatiotemporal features into AC models for advancing 
remote sensing accuracy and reliability.

However, the proposed work has some limitations. First, 
the availability of historical data is limited, which may hin-
der the model’s ability to capture long-term atmospheric 
variations comprehensively. Moreover, similar to many DL 
models, STAC faces challenges in interpretability, making 
it difficult to explain its internal decision-making process. 
Another limitation is the absence of uncertainty estimation 
in the predictions, which could affect the model’s reliabil-
ity in specific scenarios. Furthermore, the model is trained 
explicitly on Landsat-8 data, limiting its applicability for AC 
of images from other satellites. A potential solution would 
be implementing a transfer learning approach to adapt the 
model for other satellite platforms. Transformer-based archi-
tectures will be explored to improve the model’s scalabil-
ity and performance. Finally, future work will incorporate 
real-time processing capabilities to enable faster and more 
efficient SR predictions for practical applications.
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can be downloaded from: https://​earth​explo​rer.​usgs.​gov/.
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Fig. 5   Standard deviation of the relative differences between the Rad-
CalNet and model predicted SRs per band for LaCrau (France) site. 
X-axis: Landsat-8 spectral bands, Y-axis: Standard deviation of the 
relative differences
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