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Abstract
Machine learning and computer vision allow the development of sophisticated models for evaluating an athlete's readiness 
and fatigue. In this paper, we studied the effects of stressors faced by athletes to comprehensively evaluate their readiness 
and fatigue while maximizing their game performance and minimizing the risk of injury. An athlete's readiness and fatigue 
were quantified using a modified reactive strength index (RSImod), computed using countermovement vertical jumps. Our 
study was conducted over 26 weeks with 17 collegiate women's basketball athletes. The proposed model first learns the rela-
tionship between RSImod and the athletes' physical, physiological, and cognitive features. Then, it augments its learning by 
considering the smallest worthwhile change (SWC) of the five most significant features that correlated well with RSImod to 
account for intra-athlete variability. Finally, we used our proposed hierarchical approach employing decision tree classifiers 
and regressors (ensemble–boosting) to predict an athlete's RSImod score for the following week. Our experiments demon-
strated that SWC augmentation improved RSImod level prediction accuracy from 92.83% (original dataset) to 95.28%. The 
proposed hierarchical approach performs better (MSE 0.011, R2 0.963) than state-of-the-art prediction algorithms (multilinear 
and random forest regressor), generates interpretable outcomes, and helps coaches develop effective training schedules and 
game strategies. When tested without SWC augmentation, the hierarchical model achieved an MSE of 0.028 and an adjusted 
R2 of 0.906. SWC augmentation reduced the MSE by 60.71% (from 0.028 to 0.011). It increased the adjusted R2 by 6.29% 
(from 0.906 to 0.963), further highlighting the combined efficacy of SWC augmentation and the hierarchical approach. By 
integrating various physical, physiological, and cognitive features, the proposed model helps coaches optimize athlete per-
formance and mitigate injury risks effectively.

Keywords  Basketball · Collegiate athletes · Countermovement jumps · Fatigue monitoring · Reactive strength index · 
Smallest worthwhile change · XGBoost model

Introduction

Advancements in sports analytics due to recent develop-
ments in machine learning (ML) and computer vision (CV) 
tools and techniques have facilitated non-intrusive moni-
toring of athletes and the collaboration of coaches, biome-
chanical researchers, and data scientists in the design, devel-
opment, and analysis of sophisticated models that exploit 
athletes' physiological, mental and cognitive data for opti-
mizing athletes game performance while minimizing risk 
of injury [1]. Collegiate basketball is characterized by high-
intensity activities requiring various technical and tactical 
abilities from the athletes to cope with game demands dur-
ing a relatively short season [2]. The athletes must balance 
their training schedules, sleep and recovery cycles, academic 
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load, social commitments, and extensive game schedules. 
With these multifaceted potential stressors faced during the 
season, it is essential to consider an athlete's physiological, 
mental, and cognitive state to comprehensively evaluate their 
readiness and fatigue for developing training schedules and 
game strategies [2].

Countermovement jump (CMJ) is a time-efficient, non-
invasive athlete jumping performance evaluation test that 
measures athletes' training adaptations, a key for evaluating 
their neuromuscular fatigue and readiness [3]. These jumps 
involve the strength-shortening cycle (SSC), which is vital 
in sprint accelerations. The CMJ assessment is, therefore, 
crucial for evaluating the key performance indicators (KPIs) 
of basketball athletes who frequently require accelerations 
and decelerations [1]. Monitoring CMJs, training, emotional 
and mental stressors, and sleep and recovery cycles provides 
a comprehensive understanding of an athlete's readiness and 
response to physical, physiological, and cognitive stimuli.

From an athlete's CMJ, we can compute reactive strength 
index modified (RSImod). This key attribute captures an 
athlete's readiness. RSImod is an extensively used measure 
for assessing an athlete's ability to generate maximal verti-
cal impulse quickly [2]. It is a composite metric computed 
from jump height (JH) and contact time (CT). While JH is 
determined using the flight time technique, CT is the time 
duration from initiation of the jump to take-off.

RSImod reflects lower extremity explosiveness, incor-
porating factors such as speed and force [4]. It evaluates 
athletes' performance and monitors their neuromuscular 
functional status [3]. It is preferred over conventional met-
rics such as JH, force, or power as it provides more relevant 
information about changes in the movement strategy during 
the jump.

A meta-analysis examining the association of RSImod 
with independent measures of sporting and neuromuscular 
performance was conducted. It was followed by assessing 
the impact of rebound test instructions on maximizing the 
jumping displacement and minimizing ground contact time. 
Results showed that RSImod was significantly and moder-
ately positively associated with strength and endurance 
performance and negatively associated with acceleration 
and change of direction speed [5]. A study investigated the 
correlation between RSImod and biomechanical variables in 
drop jumps (DJs) performed at varying heights. Although 
vertical stiffness positively correlated with RSImod, the 
other parameters did not vary much at different heights [6]. 
Another study investigated the relationship between ground 
reaction force (GRF) variables and jump height, RSImod, 
and jump time in 26 male Division-I soccer players. The 

(1)RSImod =
JumpHeight(JH)

ContactTime(CT)

study concluded that countermovement characteristics are 
essential for time-sensitive CMJ performance measures and 
that researchers should include RSImod and jump time to 
improve their assessment of jump performance [7].

In studies conducted in sports with a small sample size 
(17 athletes here), features contributing to an athlete's per-
formance are assessed by evaluating their impact on the key 
performance indicator (here, RSImod) based on the entire 
population data. These approaches are not robust due to 
small sample sizes. They are insensitive to intra-individual 
variability as different athletes progress differently during 
the entire season. It has motivated sports science researchers 
to consider the smallest worthwhile change (SWC) measures 
to account for intra-individual variability in athletes' perfor-
mance. SWC is calculated for each feature for each athlete 
individually. The suggested changes in the magnitude of a 
feature for an athlete (based on the previous week's base-
line readings and the deviation from an overall population) 
are augmented to the training dataset to improve prediction 
outcomes. Using SWC helps identify the slightest change 
possible in significantly contributing features that increase 
chances of success in competitions or personal goals [8]. 
It helps the coaches and practitioners to be more confident 
that the changes they see in athletes' RSImod scores are not 
simply due to chance [9].

The fast and dynamic nature of collegiate basketball, cou-
pled with complex physical, psychological, and cognitive 
features contributing to athletes' fatigue and readiness, has 
necessitated qualitative studies to supplement quantitative 
studies to help design influential athletes training routine 
planning and game strategizing [10]. The existing studies 
have primarily presented a quantitative analysis of differ-
ent internal–external loads in measuring fatigue in differ-
ent team sports [11]. However, no research shows a holis-
tic study assessing the impacts of multiple task-dependent 
(training, CMJs) and psycho-physiologic and intrinsic 
(cognitive capacity, sleep patterns, cardiac rhythm, fatigue) 
features in the athlete's routine on their readiness for the 
following days. This study presents a qualitative analysis 
that helps characterize the relationship between the various 
physical, physiological, and cognitive features and RSImod 
(inferential modeling). Quantitative analysis also validates 
it, which helps predict athletes' readiness regarding RSImod 
(predictive modeling). Our model predicts the RSImod score 
of athletes by considering their sleep and recovery patterns, 
cognitive state information, and subjective training statistics 
from the previous week. The model is built hierarchically, 
utilizing the strengths of both decision tree (DT) classifi-
ers and decision tree regressors – with a boosting approach. 
The SWC analysis is conducted as a preprocessing step for 
augmenting the dataset with information on changes in the 
magnitude of significant features that could serve as valuable 
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thresholds for interpreting the magnitude of changes in the 
athletes' RSImod score the following week.

The prediction of RSImod is made at a global level (inter-
athlete), taking the internal/external load quantifying fea-
ture readings of all athletes together (model trained over 
the entire dataset). However, the SWC calculation is made 
at a local level (intra-athlete) for each feature reading of 
each athlete individually and augmented with the dataset. 
It makes our method robust as general and athlete-specific 
patterns are considered when predicting athletes' readiness 
for the following week. Thus, this study's primary aim (PA) 
was (PAI): an examination of the impact of suggested mean-
ingful changes in the magnitude of internal–external load 
quantifying features, significantly contributing to fatigue, on 
the CMJ-derived RSImod score of athletes. These changes 
would then be augmented to the baseline readings of the 
current week and used for prediction as PAII. The RSImod 
score for the following week was predicted based on the raw 
feature values from the previous week and the suggested 
meaningful changes in magnitude using ML algorithms.

Dataset

17 female collegiate competitive basketball athletes (mean 
[standard deviation]: n = 17, age = 21.00 [± 3.00] years, 
height = 174.21 [± 19.27] cm, body mass = 73.98 [± 11.52] 
kg) participated in this study. This study investigates the 
effects of physiological load – sleep and recovery cycle, 
training, competition, and academic load on athletic readi-
ness. It is quantified in terms of the athlete's RSImod score 
during a CMJ. The analysis is conducted over 26 weeks of 
a competitive season. During this phase, the athletes wore 
WHOOP (Version 4.0, Boston, MA, USA) wearable devices 
24/7– measuring their resting heart rate (RHR), heart rate 
variability (HRV), recovery percentage, and sleep. Their 
training sessions each day (stretching, core exercises, game-
based training drills, technical exercises, and strength-power 
exercises) were assessed through a rating of perceived exer-
tion (sRPE) calculated after each training session. The ath-
letes also completed a short recovery short stress (SRSS) 
questionnaire, which assessed their cognitive state twice per 
week. They performed a CMJ test on dual force plates once 
weekly – recording jump height and contact time to calculate 
the RSImod score. The athletes were familiarized with the 
testing procedures and monitoring tools used.

This study has been ongoing since 2020–21 (First sea-
son). We collected the first year's sleep-recovery, training 
load, and stress-recovery questionnaire data. From 2022 
onwards, we started collecting the countermovement jump 
data (dual force plate readings) that provided us with the 
RSImod scores. As this study was conducted at the end of 
Season 2, we had this data for 17 athletes who were a part 

of that season. However, after 4 years, in 2024, we have had 
this data for 27 athletes. Some athletes repeat in consecutive 
years while new ones join in. So, we have not been able to 
track a single athlete consistently. However, we have been 
able to cover athletes with different behavioral patterns tac-
tically and physiologically. It is ongoing research, and the 
collection will continue in the coming years. Our proposed 
methodology is scalable to increasing or decreasing the 
number of athletes being considered. Bringing in the SWC 
concept helps bring respective athlete-specific variations as 
and when new athletes join in. However, the core model 
design is generalizable. It provides robust outcomes for new 
data, irrespective of the variability in terms of new and any 
number of athletes being added.

Session Rating of Perceived Exertion

Training load was assessed using the sRPE, which accounted 
for the workload from resistance training, sports training, 
metabolic conditioning, and gameplay [12]. Around 15 min 
after each training session, the athletes provided a rating on a 
10-point scale to indicate their perceived exertion during the 
session. This rating was then multiplied by the duration of 
the training session. Various derived features were utilized 
for further analysis, including total weekly load (TWLoad), 
training strain, daily average, monotony, and weekly stand-
ard deviation [13].

Sleep and Recovery

The WHOOP strap is a wearable device that tracks and ana-
lyzes biomarkers and sleep for athletes [14]. It provides sleep 
analysis (sleep quality, sleep duration, stages of sleep) and 
metrics such as RHR, HRV, recovery, and respiratory rate. 
Its consistency has been validated as an alternative to poly-
somnography for sleep analysis [12].

Short Recovery Short Stress Questionnaire

Twice each week, the athletes used an online dashboard to 
fill out a short recovery and short stress questionnaire that 
collected information on their emotional and mental state. 
There were eight questions – four related to recovery. In con-
trast, the rest were related to stress (overall recovery (OR), 
overall stress (OS), negative emotional state (NES), lack of 
activation (LA), muscular strength (MS), physical perfor-
mance capabilities (PPC), mental performance capabilities 
(MPC), emotional balance (EB). They scored for each ques-
tion on a scale of 0–6 (Likert scale) [12].
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Countermovement Jump

The athletes perform CMJ as a component of their train-
ing regimen. Each CMJ session took place on the same day 
of the week (Monday or the first training day) to track the 
athletes' readiness profile. After a low-intensity warm-up, 
the athlete performed a set of three CMJs over the pres-
sure plate. The instruction is to maximize JH and minimize 
ground CT. Figure 1 shows the standardized CMJ task per-
formed by athletes. The athletes place their hands on their 
sides, take a deep squat, and jump as high as possible. The 
dual force plates (FDlite, Vald Performance, Brisbane, QL, 
AUS) sampled at 1000 Hz record several metrics for each 
jump, including body weight, peak power, RSImod, and 
JH during the CMJ. The highest RSImod score of the three 
CMJs was considered for the trial and is used for further 
analysis [15].

Methodology

In this study, RSImod is modeled as a weighted function of 
40 features.

•	 35 features quantifying the task-dependent (external) and 
the psycho-physiologic and intrinsic (internal) load an 
athlete undergoes during a season.

•	 5 features quantifying the suggested magnitude of change 
in the most significant features based on a week prior 
readings.

Figure 2 outlines the methodology followed. The data 
(35 features) for each source, namely sleep and recovery, 
subjective training, questionnaire, and countermovement 
jumps, was collected following the techniques described 
in section II (1. data collection). During data collection, 
some records were found to have missing entries from the 

sleep and recovery data or the questionnaire data. These 
may have occurred due to athletes' forgetfulness in wear-
ing the WHOOP strap, improper attachment to their wrist, 
negligence of charging the WHOOP strap, or keeping the 
application running on their mobile devices. The athletes, 
at times, did not complete the surveys, especially during the 
season. The data appeared missing at random (MAR), with 
thirteen missingness percentages. The multiple imputation 
by chained equation (MICE) technique is the most suitable 
for data imputation when data is MAR [16]. It is the most 
accurate due to its conditional modeling of the missing fea-
ture on the other features [17]. Hence, we used MICE to fill 
in the missing values to avoid bias in prediction outcomes 
(2. data cleaning).

The aggregate dataset had one reading per day for each of 
the 35 features, while the CMJs were performed only once a 
week, leading to only one RSImod score per week. We first 
mapped the seven readings for each feature into one reading 
(average) per week. Next, we converted the dataset to make 
it suitable for predicting the RSImod score for the following 
week (time-series prediction) using the XGBoost model. An 
instance (x, y) was formed as follows: for independent fea-
tures, we used week N's average readings as X (x1, …, x35), 
and the RSImod score for week N + 1 was used as y. It helped 
assess the impact of the current week's (N) internal/external 
load on the following week (N + 1) (3. data preparation).

Next, we analyzed the range of RSImod scores. We 
computed its measures of central tendency (mean, median, 
standard deviation, and range) and its interquartile range 
values (min, Q₁, Q₂, Q₃, and max) for understanding the 
distribution. Following this, we checked the Pearson's 
correlation coefficient score of each of the 35 independ-
ent features for the target feature RSImod. We selected 
the top five most significant features (4. exploratory 
data analysis). For each of these significant features, we 
conducted the SWC analysis. For each athlete Ai, where 
i = 17, and for each significant feature SFj, where j = 5, 

Fig. 1   The standardized 
countermovement jump task. 
Subjects are instructed to jump 
as high as possible



SN Computer Science           (2025) 6:156 	 Page 5 of 14    156 

SN Computer Science

SWC was calculated. Using SWC, the suggested change 
in magnitude of each feature for each athlete each week 
was computed (considering the previous week's baseline 
reading). These computed values were augmented to the 
dataset as 5 SWC features (to be used for prediction) (5. 
data augmentation).

The samples were then divided across multiple groups 
based on the RSImod score to account for heterogeneity 
amongst the athletes over the season. A quartile ranging 
approach [14, 18] was used for creating groups with RSI-
mod values less than 25%, 25–50%, 50–75%, and greater 
than 75%, representing low (0.2 to 0.32), moderate (0.32 to 
0.36), high (0.36 to 0.41), very high (0.41 to 0.67) levels of 
athlete readiness (6. data preprocessing). The distribution of 
samples across four levels revealed an imbalance, creating 
challenges for classification due to limited instances of the 
minority class [12]. To overcome this, augmenting minor-
ity class examples is essential. Balancing techniques like 
SMOTE [20] and ENN [21], involving data undersampling 
and oversampling, were applied for improved performance 
in decision tree-based algorithms (7. data balancing). Our 
hierarchical model first predicted the RSImod level with 
class probabilities using the ensemble of decision tree clas-
sifiers. These probabilities were then utilized by the ensem-
ble of decision tree regressors as weights for RSImod score 
prediction (8. athlete readiness prediction).

The performance of the proposed approach is evaluated 
as follows: (i). We performed an inferential dataset analysis 
to validate the SWC analysis's efficacy. For each significant 
feature, we assessed the impact of the suggested change in 
magnitude on the RSImod score of the following week by 
counting and comparing the percentage records showing a 
positive/negative correlation. These results were mapped to 
the sports science literature for ground truth validation. (ii). 
We compared the prediction accuracy and F1 score of the 
XGBoost classifier (RSImod level as target feature) trained 
on the original 35-feature dataset and that trained on the 
40-feature dataset (suggested change in magnitude aug-
mented) to assess if SWC-based augmentations improved 
the prediction accuracy. (iii). Mean squared error (MSE) and 
adjusted R2 value of our proposed hierarchical model were 
compared to the MSE and adjusted R2 value of three state-
of-the-art decision tree models – decision tree regressor, 
random forest regressor and XGBoost regressor (9. perfor-
mance evaluation).

We visualize an ensemble's decision tree classifier to 
reveal internal components, aiding coaches in understanding 
prediction outcomes (10. outcome interpretation). Our inter-
active dashboard empowers coaches to assess team perfor-
mance, identify areas for improvement, and make informed 
decisions on strategies. Athletes monitor their stats, while 
coaches access the same for all athletes. They plan to embed 

Fig. 2   Proposed methodology
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prediction algorithms for pre-game insights. Currently, two 
user dashboards (coach and athlete) display daily, weekly, and 
monthly readings of 35 load-quantifying features. (11. dash-
board development).

Smallest Worthwhile Change Augmentation

SWC insight empowers coaches to confidently identify causal 
factors or chance occurrences of RSImod deviations [22, 23].

We use it as follows: suppose the RSImod score of an athlete 
in week 1 equals 2.7, and the SWC calculated for the athlete 
over the season is 0.158. In that case, the athlete needs to have 
an RSImod score > 2.858 (2.7 + 0.158) next week to improve 
performance. This 2.858 is the suggested meaningful change 
in RSI. Typical error (TE) is calculated as the difference 
between the suggested meaningful change in score and the 
actual score in the following week [23]. If the athlete's RSImod 
score next week is 2.94, the TE equals 0.082 (2.94—2.858). 
W.G. Hopkins et al. suggest the following interpretation for 
TE: < 0.2 trivial, 0.2—0.6 small, > 0.6—1.2 moderate, > 1.2—
2.0 large, > 2.0—4.0 very large, > 4.0 extremely large [24]. In 
this case, there was a trivial improvement (TE < 0.2) in the 
RSImod score of the athlete.

A comparative analysis is conducted to assess the relation-
ship between suggested changes in the magnitude of signifi-
cant features (measured in the previous week) and the RSImod 
score recorded in the following week. A SWC is calculated 
for these significant features with athlete-specific SD for each 
athlete, using the athlete's week 1 to week 26 data as popu-
lation. For example, the SWC for JH is calculated for each 
athlete. The calculated SWC is added to the nth week's jump 
height (JHn) to compute the suggested jump height (SJH) 
for the following week. The jump height the following week 
(JHn+1) is compared with SJH. The nth week's RSImod score 
(RSImodn) is compared with the n + 1th week's RSImod score 
(RSImodn+1) to assess the relationship between JH, SJH, and 
the RSImod score.

These estimates of the suggested magnitude of change 
using the smallest worthwhile change in the identified top 
five most significant features were augmented to the baseline 
dataset with 35 features.

Proposed Hierarchical Approach

Our model begins with the top structure consisting of an 
ensemble of DT classifiers (decision forest), each trained 
using a different subset of features, a choice of hyperpa-
rameters (max-leaf-nodes, minimum-samples, max-depth), 
and a random subset of training data. This pruned decision 

(2)SWC = 0.2X population SD

forest is divided into groups, each representing a class label, 
using class prediction accuracy as a threshold. Each group is 
used to classify data points associated with that group. This 
inner structure of DTs associated with each group is then 
analyzed to identify the most efficient operational paths for 
that respective class label, using operational path efficiency 
(respective class prediction accuracy of the operational path 
calculated at the leaf node) as a threshold. Next, the train-
ing dataset is divided into subsets, one for each class label, 
using the identified operational path traversal as a condition. 
A DT regressor per class is trained on these data subsets. 
While the pruned decision forest results in class probabili-
ties, these DT regressors result in RSImod score each. The 
final model outcome is the RSImod score calculated as a 
weighted average over all DT regressors, with class prob-
abilities as weights. This way, the proposed approach gener-
ates ensemble DT regressors from an initially built ensemble 
decision forest of classifiers. It considers the training data 
properties (conjunctive rules/operational paths relevant to 
the training instances and the class distribution) rather than 
solely considering the inner structure of the decision forest 
and the prediction outcomes.

More formally, given the training data D consisting of a 
collection of L data points (xi, yi), for i ∈ [1…L], where xi 
and yi correspond to the n-dimensional feature vector of the 
ith data point and its associated class label, where yi belongs 
to one of the m labels in [class₁, …, classm]. Our decision 
tree (DT)-based methods essentially construct k DT classi-
fiers {T₁, …, Tk} (decision forest F), where each classifier 
is constructed using a different subset of features, choice of 
hyperparameters (max-leaf-nodes, minimum-samples, max-
depth), and a random subset of training data D. These clas-
sifiers associate a class probability vector {ℎ₁(x), …, ℎk(x)} 
with each feature vector x.

We now describe our DT-based prediction method in five 
main stages: Decision Forest pruning, generation of sub-for-
ests (DT clusters), extraction of efficient conjunctive rules, 
generation of class-wise sub-datasets, and outcome predic-
tion. We first construct a minimal forest F1 from F by prun-
ing it while attempting to obtain a predictive performance 
close to F. The forest F1 associates a class probability vec-
tor computed as an aggregate function g, a softmax applied 
over the sum of base trees log-odds (XGBoost). The DTs of 
forest F1 are then class-wise clustered to create sub-forests 
{cluster1, …, clusterm}. Next, finite sets of conjunctive rules 
(operational paths) most likely to result in correct class label 
prediction are extracted for each sub-forest {S1, …, Sm}. For 
each sub-forest, all instances (x, y) from the dataset that trace 
down to the correct class label using the extracted conjunc-
tive rules form a separate subset of data—{D1, …, Dm}. We 
train m DT regressors {R1, …., Rm} over sub-dataset {D1, …, 
Dm} respectively, considering that the data within each sub-
set has low variability. The outcome is the weighted average 
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of all DT regressor outcomes with the probabilistic outcome 
of F1 {P(C1), …, P(Cm)} serving as weights for each regres-
sor, respectively.

Decision Forest Pruning

Forest pruning is a preliminary step in obtaining an ensemble 
with the most relevant base trees. This pruning is performed 
using the benefit-driven greedy approach. In this technique, 
the base trees are added to the ensemble iteratively. We start 
with an empty ensemble. The algorithm searches for a base 
tree with classification accuracy greater than 80% and adds it 
to the ensemble. In the following stage, a base tree is added, 
and combined with the already added base tree, it obtains an 
average classification accuracy greater than 80% (boosting 
approach). The process repeats until there is no base tree 
left, which would improve the classification accuracy of the 
ensemble.

Algorithm: Decision Forest Pruning

Input: F (Decision forest comprising of k DTs),  D (training set)
Output: F1 (Pruned ensemble – a subset of k DTs from F)
F1 = Ø
prediction_accuracy (F1) = 0
for Tk in F do
  if prediction_accuracy (Tk) > 80% then
   add Tk to F1

   prediction_accuracy (F1) = prediction_accuracy (Tk)
   break;
  end
end
for Tk in F do
  for Tk in F1 do
   prediction_accuracy (F1) = AVG(prediction_accuracy (F1), predic-

tion_accuracy (Tk))
  end
  if Tk not in F1 then
   if AVG (prediction_accuracy (Tk), prediction_accuracy (F1)) > 80% 

then
    add Tk to F1

   end
  end
end

Generation of Sub‑Forests (Decision Tree Clusters)

The DTs of the ensemble forest F1 are next divided into class-
specific clusters. This clustering is performed based on class 
prediction accuracies. For each DT Tk, we determine the 
percentage data instances (x, y) from training dataset D that 
belong to class m and have correctly been classified as class 
m by the DT, for each class{class_prediction_accuracy (C1), 

…, class_prediction_accuracy (Cm)}. For each class m, the 
DTs with class_prediction_accuracy (Cm) greater than 80% are 
added to class m representing sub-forest (cluster). Since each 
Tk in F1 has an overall prediction accuracy greater than 80%, 
each DT will become a part of at least one cluster. Moreover, 
a DT can also be a part of more than one cluster.

Algorithm: Generation of DT Clusters

Input: F1 (Pruned ensemble – a subset of k DTs from F), D (training 
set), C (class labels)

Output: cluster1, …, clusterm (class-wise sub-forests)
for m in C, do
  clusterm = Ø
end
for Tk in F1 do
  for m in C, do
   if class_prediction_accuracy (Cm) > 80% then
    add Tk to clusterm
   end
  end
end

Extraction of Efficient Conjunctive Rules

Following the class-wise cluster generation stage, we next 
apply a technique for decomposing the DTs and extracting 
conjunctive rules used for classification. We create a conjunc-
tion set for each class m – {S1, …, Sm} comprising operational 
paths in the DT (viewed as a conjunctive rule) that are most 
likely to predict the correct class label m with high efficacy.

We start with empty conjunctive sets. Then, each DT Tk is 
broken down into a set of conjunctive rules CR {r1, r2, …, rp} 
that map to a vector of class probabilities v [cp1,.., cpm]. For 
each rule rp, if the class probability of class m is greater than 
80%, the rule rp is added to the conjunctive set Sm.

Algorithm: Extraction of Efficient Conjunctive Rules

Input: cluster1, …, clusterm (class-wise sub-forests), D (training set), 
C (class labels)

Output: S1, …, Sm (class-wise conjunctive sets)
for m in C, do
  Sm = Ø
end
for m in C, do
  for Tk in clusterm do
   R = all operational paths of tree Tk leading to class m
   for r in R, do
    if cpm(r) > 80% then
     add r to Sm
    end
   end
  end
end
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Generation of Class‑Wise Sub‑Datasets

In this stage, for each rule r in conjunctive set Sm, the 
instances (x, y) where y = m that traversed through opera-
tional path r and got assigned the label m were added to the 
sub-dataset Dm—(D1 ⋃ D2 ⋃ … ⋃ Dm = D).

Algorithm: Generation of sub-datasets

Input: S1, …, Sm (class-wise conjunctive sets), D (training set), C 
(class labels)

Output:  D1,...,  Dm (class-wise sub-datasets)
for each m in C do
 for each r in Sm do
 for each (x, y) in D do
 P = instances (x, y) that traversed through r
 for each (x, y) in P do
 if y =  = m then
 add (x, y) to Dm

 end if
 end for
 end for
 end for
end for

Outcome Prediction

In the final stage of the developed approach, for each class 
m, a DT regressor (XGBoost) is trained over sub-dataset m, 
resulting in m DT regressors {R1, …, Rm}. Notice that the 
variability in data points belonging to the training set Dm is 
less than dataset D. Now, for each test instance in T = [(x1,), 
…., (xt,)], the pruned ensemble decision forest F1 results in 
a class probability score vector {P(C1), …, P(Cm)}. These 
scores are passed as weights to the respective DT regres-
sors {R1, …, Rm}. A weighted average of the DT regressor 
outcomes is presented as the outcome.

Algorithm: Outcome Prediction

Input: test instance [(x1,), …., (xt,)]
Output: Predicted Outcome
for (xt,) in T do
  F1 generates class probabilities {P(C1), …, P(Cm)}
  DT regressors {R1, …, Rm} generate outcome {yt1, yt2, …, ytm}
nfinal outcome = AVG (P(C1) × yt1 + P(C2) × yt2 + … + P(Cm) × ytm)
end

Experimental Evaluation

The implementation was written in Python (3.13.0). 
Sklearn's (1.4.0) decision tree regressor, XGBoost classi-
fier, XGBoost regressor, and random forest regressor were 
fitted over the dataset to evaluate the approach's efficacy. 
The range and values of hyperparameters were fixed: three 
different levels of depth of DT were defined (three, four, and 
five). The size of sub-samples was limited to 60%, 80%, or 
100%; feature subsets were selected randomly in proportions 
of 60%, 80%, and 100%, and the number of classes defined 
was four. An exhaustive grid search was conducted with ten-
fold cross-validation to find the best fitting hyper-parameters 
for each model.

Results

Four hundred and forty-two (n = 442) CMJs were analyzed. 
The RSImod was reported as mm/ms from the CMJ analy-
sis. The duration ranged from week 1 to week 26, with one 
weekly CMJ session. The descriptive statistics for RSImod 
scores throughout the season (17 athletes × 26 weeks) are 
summarized in Table 1.

To identify what internal/external load quantifying fea-
ture could have caused variability in RSImod, we calculated 
Pearson's correlation coefficient value for each feature for 
RSImod. Table 2 lists the five most significant contributing 
features. RSImod is a valuable indicator of an athlete's abil-
ity to generate force rapidly during a movement, and jump 
height is a direct measure of this force production, hence 
the high correlation. Including jump height in the analysis 
serves a dual purpose: validating the effectiveness of the 
proposed SWC augmentation to improve athlete readiness 
predictions while ensuring a comprehensive evaluation of 
factors influencing athletic performance. Interestingly, Hours 
of Sleep, Strain, Total Workload, and Heart Rate Variability 

Table 1   Descriptive statistics for RSImod score

Descriptive Statistics Values

CMJs (n) 442
Duration Week 1–26
Athletes 17
Mean 0.37
Standard deviation (SD) 0.08
Range 0.47
Minimum 0.20
Maximum 0.67
Q1 0.32
Q2 0.36
Q3 0.41
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also emerged as influential factors. These features represent 
external and internal stressors that can impact an athlete's 
overall well-being and physical condition. Hours of Sleep 
reflect recovery and fatigue management, Strain and Total 
Workload quantify the external stress imposed on the body, 
and Heart Rate Variability provides insights into the auto-
nomic nervous system's response.

Inferential analysis was conducted over the five most sig-
nificant features and the impact of their suggested change in 
magnitude on the following RSImod score for each athlete. 
Table 3 presents the outcomes of the comparative analysis 
for features JH and RSImod.

As per the analysis, 71.66% of athletes who jumped 
higher than the SJH improved their RSImod score, while 
18.29% of athletes who jumped lower than the SJH scored 
a lower RSImod. Interestingly, 4.20% of athletes scored a 
lower RSImod despite jumping higher than the SJH com-
pared to 2.35% who recorded a higher RSImod despite jump-
ing lower than the SJH. The following week, 2.10% and 
1.40% of athletes recorded the same RSImod despite jump-
ing higher than and lower than SJH, respectively. A similar 
analysis was conducted with features: Hours of sleep (HoS), 
Strain, Total Workload (TWLoad), and Heart Rate Varia-
bility (HRV). Tables 4–7 summarize comparative analysis 
outcomes for HoS, Strain, TWLoad, and HRV, respectively.

As per the analysis in Table 3, 89.95% of records sug-
gested that a change in the jump height compared to the 
SJH positively correlates with the RSImod score. As per 
Table 4, 72.90% of records suggest that if the TE between 
the SHoS and the actual HoS is trivial, minor, or moderate 
( ±), the RSImod either remains consistent or improves over 

the season, while 18% of records suggest that if the TE is 
large, very large or extremely large ( ±), the RSImod score 
decreases. It can be observed from Table 5 that 73.33% of 
records suggest that if the TE between the suggested Strain 
and the actual Strain during the weekly training is trivial, 
small, or moderate ( ±), the RSImod either remains consist-
ent or improves over the season. 22% suggest that if the TE 
is large, very large, or extremely large ( ±), the RSImod score 
decreases. Similarly, Table 6 shows that 72.20% of records 
suggest that if the TE between the STWLoad and the actual 
TWLoad athlete undergoes during the weekly training is 
trivial, small, or moderate ( ±), the RSImod either remains 
consistent or improves over the season. While 22% suggest 
that if the difference is significant, very large, or extremely 
large ( ±), the RSImod score decreases. As per Table 7, 
88.60% of records suggested that an improvement in the 
HRV compared to the SHRV leads to an improvement in the 
RSImod score and vice versa.

The SWC in the features is highly correlated to RSImod 
and can be used to detect relevant performance effects. These 
estimates of the SWC in these features (previous week)—
SWC_JumpHeight, SWC_HoursofSleep, SWC_Strain, 
SWC_TWLoad, and SWC_HRV would serve as valuable 
thresholds for interpreting the magnitude of changes in the 
athletes' RSImod score, the following week. These SWC fea-
tures (five) were appended to the baseline data, including 
the internal/external load quantifying features (thirty-five). 
A total of forty independent features were used for RSImod 
prediction.

After dividing the records into four levels of RSImod 
using quartile ranging, a new column, 'RSImod level' with 
labels low (0), moderate (1), high (2), and very high (3) for 
respective RSImod scores, was added to the dataset Fewer 
records, 38% belonging to high and very high levels of ath-
lete readiness compared to 62% belonging to low and mod-
erate levels, resulted in data imbalance. The combination of 
SMOTE and ENN for data balancing increased the sample 
size (n = 712), with 50% of records belonging to high and 
very high levels of athlete readiness and low and moderate 
levels each.

To assess if SWC-based augmentations improved the pre-
diction accuracy, we trained the XGBoost classifier (RSI-
mod level as target feature) on the original 35 feature dataset 

Table 2   Pearson's correlation coefficient for the five most significant 
features

Feature Cor-
relation 
Value

Jump Height (CMJs) 0.91
Hours of sleep (sleep and recovery) 0.72
Strain (training) 0.58
Total workload (training) 0.56
Heart Rate Variability (sleep and recovery) 0.52

Table 3   Percentage records depicting the relationship between JH, 
SJH, and RSImod score

% JHn+1 > SJH JHn+1 < SJH

RSIn+1 > RSIn 71.66 02.35
RSIn+1 < RSIn 04.20 18.29
RSIn+1 = RSIn 02.10 01.40
Total 77.96 22.04

Table 4   Percentage records depicting the relationship between HoS, 
suggested HoS (SHoS), and RSImod score

% HoSn+1 > SHoS HoSn+1 < SHoS HoSn+1 ~ SHoS

RSIn+1 > RSIn 02.30 04.65 67.05
RSIn+1 < RSIn 09.78 09.34 03.38
RSIn+1 = RSIn 00.36 00.67 02.47
Total 12.44 14.66 72.90
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(using grid search to estimate the best set of hyperparam-
eters: colsample_bytree = 0.8, gamma = 0.5, max_depth = 3, 
min_child_weight = 1, n_estimators = 100) and then on the 
40 feature dataset A limited number of CMJs and data scar-
cities could introduce significant bias in prediction accuracy. 
Therefore, we used the F1 score to evaluate the classifier's 
performance. As false positive (FP) and false negative (FN) 
are equally important in assessing an athlete's readiness for 
the week ahead, the F1 score balanced them in evaluations. 
We used a stratified tenfold cross-validation technique for 
generalizing the model. Following the traditional 70:30 
training: testing ratio, 499 records were used for training 
and 213 for testing. The XGBoost classifier resulted in a 
prediction accuracy of 95.28% and an F1 score of 0.96 on 
the 40-feature dataset compared to a prediction accuracy of 
92.83% and an F1 score of 0.92 on the 35-feature dataset. 
Figure 3 represents the confusion matrix depicting XGBoost 
classifier outcomes for RSI-level prediction. The cells in 
green mark the true positives and false negatives, while the 
cells in red mark the false positives and true negatives.

We then predicted the RSImod score using the proposed 
hierarchical DT-based model. The adjusted R2 score and 
Mean Square Error (MSE) determine how much the pro-
posed approach improves the predictions. The predictions 
from the hierarchical approach have an MSE and R2 score 
that is better than the classical DT regressor, random forest 
regressor, and XGBoost regressor applied over the complete 

dataset. Table 8 summarizes the average MSE and R2 score 
achieved by the proposed hierarchical approach and compa-
rable state-of-the-art models.

Figure 4 shows screenshots of the dashboard for ath-
letes and coaches that they can currently use to view athlete 
weekly statistics (internal/external load quantified).

Figure 5 (Appendix I) depicts a DT classifier plotted 
from the ensemble. Interpreting the decision tree (DT) 
involved systematically analyzing the splits and thresholds 
at each node, starting from the root and working through 
the branches. First, the root node is examined to identify 
the primary factor influencing the classification—in this 

Table 5   Percentage records 
depicting the relationship 
between Strain, suggested Strain 
(SStrain), and RSImod score

% Strainn+1 > SStrain Strainn+1 < SStrain Strainn+1 ~ SStrain

RSIn+1 > RSIn 02.04 01.33 70.63
RSIn+1 < RSIn 10.64 11.56 0.30
RSIn+1 = RSIn 0.50 0.60 02.40
Total 13.18 13.49 73.33

Table 6   Percentage records 
depicting the relationship 
between TWLoad, suggested 
TWLoad (STWLoad), and 
RSImod score

% TWLoadn+1 > STWLoad TWLoadn+1 < STWLoad TWLoadn+1 ~ STWLoad

RSIn+1 > RSIn 02.28 01.88 69.84
RSIn+1 < RSIn 10.66 11.60 00.24
RSIn+1 = RSIn 00.43 00.95 02.12
Total 13.37 14.43 72.20

Table 7   Percentage records depict the relationship between HRV, 
suggested HRV (SHRV), and RSImod score

% HRVn+1 > SHRV HRVn+1 < SHRV

RSIn+1 > RSIn 69.82 04.18
RSIn+1 < RSIn 03.72 18.78
RSIn+1 = RSIn 01.79 01.71
Total 75.33 24.67

Fig. 3   Confusion matrix depicting XGBoost classifier outcomes for 
RSImod level prediction – with SWC-based augmentation (left) and 
without SWC-based augmentation (right)

Table 8   MSE and adjusted R2 scores for various DT regressors

Model MSE Adjusted R2

Classical DT regressor 0.057 0.603
Random forest regressor 0.042 0.612
XGBoost regressor 0.030 0.894
Proposed hierarchical model (origi-

nal dataset)
0.028 0.906

Proposed hierarchical model (SWC 
augmented dataset)

0.011 0.963
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case,  SWC Jump Height. The thresholds at this node 
(e.g., ≤ 9.335 and > 12.735) were used to segment athletes 
into readiness categories (low, moderate, and high). Next, 
the branches were evaluated to determine secondary factors 
affecting readiness. For example, for lower jump heights, 
SWC HRV and SWC Strain were identified as critical, 
with specific thresholds (e.g., HRV ≤ 36.257) further refin-
ing classifications and hours of sleep (HOS) emerged as the 
critical determinant for higher jump heights, with thresholds 

like HOS > 5.957 indicating sustained high readiness. Each 
split was interpreted by assessing the associated class values 
(e.g., proportions of samples per class) to understand the fac-
tor's influence on readiness levels. Finally, the entire tree was 
reviewed to synthesize insights, identify the relationships 
between metrics and readiness levels, and translate these 
into actionable coaching recommendations.

From the plotted DT (Appendix I), it can be inferred 
that the suggested change in magnitude of JH followed by 

Fig. 4   Screenshots of athlete (left) and coach (right) dashboards (E. Juliano et al., 2023)

Fig. 5   DT classifier visualization
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the hours of sleep for an athlete is the most significantly 
affecting feature of the RSImod score prediction for the fol-
lowing week. Here, suppose the suggested change in mag-
nitude of jump height for an athlete (based on intra-athlete 
variability) is greater than 12.73. In that case, there is an 
88% chance that the athlete will have a high or very high 
RSImod score the following week. If the suggested change 
in magnitude of jump height is less than 9.34, there is an 
81% chance of a low-moderate RSImod score. A strain 
greater than 19,615.52 (here, sRPE calculated) shows 
overtraining, resulting in a low-moderate RSImod score. 
Hours of sleep less than 3.14 show a lack of sleep and 
negatively impact athlete readiness. Such inferences help 
coaches estimate an athlete's fatigue in the previous week 
and assess their readiness for the week ahead. The coach 
could make informed decisions on changing athletes' train-
ing routines, suggesting rest and game strategizing.

Discussion

We have collected many of the attributes of these groups 
of athletes over 14 weeks during each season for 4 seasons. 
It, coupled with multiple attributes over multiple modes, 
helps get a sample of reasonable size with a sufficiently 
rich set of attributes. Further, the scope of this study is 
restricted to a few dozen athletes during each season. 
However, over time, we will not only have more data sets 
across seasons but also be able to extend this study to 
athletes in other teams within the conference. The study's 
diverse athlete profiles enhance the model's robustness and 
generalizability to unseen data. At the same time, SWC 
accounts for individual differences as athletes join.

Inferential Analysis (PA‑I)

JH positively correlates with RSImod, which is the most 
significant contributing feature. HoS depicts the average 
number of hours an athlete sleeps in a day, which should 
be considered an essential factor to monitor and control as 
it directly impacts performance and the risk of injuries to 
an athlete [25]. The standard suggested HoS for athletes 
is 6-8 hours daily [12]. Our analysis shows that an athlete 
sleeping significantly more or less than the suggested HoS 
decreases their RSImod score the following week. Strain 
and TWLoad reflect the total workload and variability 
across the weekly training sessions. Our analysis suggests 
that athletes should avoid large spikes (both negative and 
positive) in training volumes as they negatively affect ath-
letes' readiness for the following days. Less and too much 
training can hinder a good night's sleep, which should be 

considered when scheduling practices and workouts [26]. 
HRV, a measure of the autonomic nervous system, reflects 
physiological readiness, with higher HRV readings indi-
cating better adaptability [27], thereby, a better RSImod 
score, as the analysis suggests.

Predictive Analysis (PA‑II)

The predictions from the XGBoost classifier (with RSImod 
level as the target feature) trained on a dataset with SWC-
based augmentation have a prediction accuracy and F1 
score better compared to that trained on the baseline feature 
dataset (35 features). The augmentation in the significant 
features improved the classifier's learning of threshold and 
respective decision boundaries, thereby making RSImod 
score prediction the following week more accurate. The pro-
posed hierarchical model performs better than the state-of-
the-art DT-based regressors regarding the MSE and adjusted 
R2 metrics.

Challenges and Limitations

We faced several challenges, such as forgetfulness of the 
athletes when wearing the WHOOP strap, filling in the ques-
tionnaire, loss of charger, or failure to charge the WHOOP 
strap. We overcome these challenges by applying the miss-
ing value imputation technique – the MICE imputer. We 
also had our graduate assistant (GA), who kept reminding 
the athletes to wear the straps and fill in the questionnaire on 
time. It helped us deal with the data collection challenges. 
Yet another limitation was athlete diversity. This study was 
conducted with a Division I women's basketball team at a 
specific university. While there is also a men's basketball 
team at the same institution, data for this group has not been 
collected. Collecting mental, cognitive, and questionnaires 
from other teams is also tricky.

Conclusion

This study attempted to quantify the internal/external 
load-related features causing fatigue to an athlete and the 
impact of suggested changes in the magnitude of these fea-
tures upon the athletes' readiness (regarding RSImod) for 
the following week in a collegiate basketball setup. Using 
a multifaceted approach, we monitored and recorded mul-
tiple task-dependent features such as sRPE and its related 
features during training, RSImod from pressure plate during 
CMJs, and psycho-physiologic features such as sleep pat-
terns, cardiac rhythm, and emotional-mental state depicting 
features. The inferential analysis (PA-I) revealed that 1) JH, 
HoS, Strain, TWLoad, and HRV are the five most significant 
features causing fatigue. 2) JH and HRV positively correlate 
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with RSImod, and 3) Strain and TWLoad quantify the total 
workload during training. Too little training and overtrain-
ing negatively affect the RSImod score. 4) HoS is a quantity 
of sleep depicting feature, and an athlete sleeping too little/
more than the suggested hours is expected to have a low 
RSImod in the following week.

The predictive analysis (PA-II) revealed: 1) suggested 
change in magnitude of significant feature augmentation 
to the baseline dataset improved the RSImod score predic-
tion accuracy. The prediction accuracy and F1 score of 
the XGBoost classifier trained on the augmented dataset 
(95.28%, 0.96) were higher than that trained on the base-
line dataset (92.83%, 0.92). 2) The proposed hierarchi-
cal model outperformed state-of-the-art DT regressors. 
The MSE and adjusted R2 scores of the proposed model 
(0.011, 0.963) were better than the classical DT-regressor 
(0.057, 0.603), random forest regressor (0.042, 0.612) and 
XGBoost regressor (0.030, 0.894) as well as the proposed 
model implemented on the original dataset without SWC 
augmentation (0.028, 0.906).

The model presented is generalizable to a wide range of 
data, even with changes in the target feature. For instance, 
this model could be applied to publicly available NCAA 
data, using box or game scores as the target feature. It 
would involve using data from a single modality (e.g., in-
game statistics) rather than incorporating physical, physi-
ological, or cognitive data. However, athlete-specific vari-
ations in metrics, such as field goal attempts (FGA), could 
still be tracked for individual athletes, computing their 
SWC and utilizing the model's recommendations to aug-
ment data and predict performance in terms of box score 
or game score.

Our approach of monitoring multifaceted stressors fol-
lowed by validated inferential and predictive models helps 
the coaches guide athletes in improving their readiness for 
the days ahead. Including machine learning-based predic-
tions in the dashboard helps coaches make early decisions 
on game strategies, team composition, and training regimes.
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