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ABSTRACT
Atmospheric correction eliminates corruption in reflectance cap-
tured by satellite images due to atmospheric elements like gases, 
aerosols, and water vapours. Existing physics-based approaches 
employ radiative transfer models constructed using lookup tables 
computed for different atmospheric parameters. However, these 
approaches are computationally expensive and rely on estimates 
of parameters that are difficult to sense accurately. This paper 
proposes a deep learning model as an alternative to physics- 
based approaches. We present an end-to-end deep neural network 
trained on seasonally and spatially rich Landsat 8 satellite images 
without explicit atmospheric parameterization along with our ana-
lysis and its validation. We validate the model’s effectiveness vis- 
a-vis Landsat 8’s Land Surface Reflectance Code – LaSRC results in 
RMSE,0:042, SSIM,0:97, and correlation coefficient r,0:99. For 
ground measurements by RadCalNet, the proposed model has an 
RMSE,0:053, SSIM,0:90, and r,0:88. The results show that the 
model accurately predicts surface reflectance and correlates highly 
with reference data.
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1. Introduction

For many geospatial applications, satellites exploit the physical and chemical compositions 
of the observed surface through its surface reflectance (SR) while estimating vegetation 
indices, leaf area index, and other biophysical parameters. SR is defined as the fraction of 
incoming sunlight that the surface reflects, known as the bottom of atmosphere (BOA) 
reflectance. It differs from the top-of-atmosphere (TOA) reflectance sensed by satellite 
sensors due to solar illumination and effects from atmospheric elements like gases, aerosols, 
and water vapour. Hence, the sensed reflectance value, i.e. TOA, differs from BOA. 
Atmospheric correction (AC) must be carried out to estimate SR to factor in the effect of 
atmospheric elements. Many remote sensing applications, such as burned area identifica-
tion (Zhang et al. 2015), water depth estimation (Saeidi et al. 2023), CO2 estimation for 
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carbon neutrality (Chen 2021), soil organic carbon (Angelopoulou et al. 2019), require 
accurate estimation of SR, which shows the importance of AC for quantitative remote 
sensing. AC is highly challenging because of its dependence on estimates of solar illumina-
tion and distortion due to gases, aerosols, and water vapour that are not measurable at 
acquisition time. AC has led to many approaches, from traditional, accurate, and reliable 
physics-based approaches to simple image-based approaches.

Physics-based approaches in remote sensing depend on analytical models of radiative 
transfer that incorporate atmospheric parameters like aerosol optical depth (AOD) and 
column water vapour (CWV), along with geometric parameters such as solar zenith angle, 
solar azimuth angle, and relative azimuth angle. These parameters play a crucial role in 
accounting for the complex interactions involving the absorption and scattering of 
electromagnetic radiation. While geometric parameters are readily obtainable, obtaining 
atmospheric parameters presents a challenge. Typically, physics-based methods involve 
estimating these atmospheric parameters of the Radiative Transfer Models (RTMs) and 
subsequently utilizing them to compute SR using pre-computed Lookup Tables (LUTs) 
that are defined in terms of these estimated atmospheric parameters. Figure 1(a) illus-
trates a block diagram of the physics-based atmospheric correction approach. Fast Line-of 
-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) (Anderson et al. 2002), 
Atmospheric and Topographic Correction (ATCOR) (Richter and Schläpfer 2019), 6S 
(Second Simulation of the Satellite Signal in the Solar Spectrum) (Kotchenova and 
Vermote 2007; Vermote et al. 1997), and Land Surface Reflectance Code (LaSRC) 
(Vermote et al. 2016) are some of the Physics-based models. FLAASH is an AC model 
based on MODerate resolution atmospheric TRANsmission (MODTRAN-4) that eliminates 
the scattering and absorption effect caused by atmospheric molecules by estimating 
atmospheric parameters from atmospheric characteristics in image pixels. ATCOR and its 
variants ATCOR-2, ATCOR-3, and ATCOR-4, also based on MODTRAN-4, mainly utilized for 
airborne remotely sensed images, perform AC by first removing the effect of the 

Figure 1. Block diagram of (a) AC using physics-based models and (b) AC using deep learning models.
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atmosphere by ignoring the adjacency effect and then account for radiance from the 
neighbourhood. 6SV is the vector version of 6S designed to predict the reflectance at the 
TOA, simulating the various atmospheric conditions. It is mainly used to construct LUTs in 
the AC algorithm and is based on the method of successive orders of scattering approx-
imations. LaSRC was designed explicitly for AC of Landsat-8 images but is now used in 
Sentinel-2 and other sensors. Based on the 6S RTM, it carries the heritage of the previous 
LEDAPS algorithms implemented for Landsat-5 and Landsat-7.

Physics-based AC methods for remote sensing, while known for their precision, come 
with inherent complexities. The construction of LUTs involves extensive simulations of 
diverse atmospheric conditions with distinct atmospheric profiles. Subsequent interpola-
tion and estimation during the AC process introduce potential biases and variability into the 
SR estimation process. Moreover, these models require a deeper understanding of physics 
and are challenging to interpret, extend, and generalize. The accuracy and assumptions of 
the physical equations limit their performance. Also, due to large-scale atmospheric 
changes, the extrapolation of a physics-based model is complex as it requires significant re- 
tuning for new conditions. Furthermore, they rely on atmospheric parameters that require 
intricate modelling, involve approximations, and demand significant computational 
resources. Atmospheric parameters, like aerosol optical depth and column water vapour, 
are estimated through parametric simulations by analysing specific image regions or 
utilizing a reference target with known spectral properties in the monitored scene.

Several AOD retrieval algorithms, such as Dark Target (Jackson et al. 2013; Kaufman 
et al. 1997), Deep Blue (Hsu et al. 2006), and Multi-Angle Implementation of Atmospheric 
Correction (Lyapustin et al. 2012), have been developed and commonly use RTMs to 
determine AOD from TOA data. However, there is a notable level of uncertainty in AOD 
retrieval due to the challenge of accurately parameterizing fundamental aerosol optical 
properties. This challenge is particularly pronounced in regions with complex terrain and 
arid or semi-arid environments. Similarly, there are various approaches for estimating 
CWV, with techniques like Atmospheric Pre-corrected Differential Absorption (Schläpfer 
et al. 1998) and Low-Rank Subspace Projection-Based Water Estimator (Acito and Diani 
2018) being commonly used. However, these algorithms have limitations, such as reliance 
on unrealistic physical assumptions or dependence on other difficult-to-obtain para-
meters. AOD and CWV are crucial parameters for SR estimation from TOA data, and any 
errors in estimating these parameters introduce uncertainty in the SR derivation. 
Therefore, precise estimation of these parameters is of utmost importance.

In recent developments, a few approaches have used Deep Learning (DL) models to 
estimate these parameters. It is vital to note that AOD is a critical parameter in AC Zhou et al. 
(2023) due to its complex relationship with TOA. Authors in (She et al. 2020) and She et al. 
(2022) have explored DL models to learn this complex relationship and have estimated AOD 
values. DL-generated values are then compared with values provided by the AERONET site 
(Holben et al. 1998), which calculates AOD values using a traditional approach. The authors 
concluded that the DL model was as accurate as the physics-based RTM. In similar attempts, 
DIOUF, Niang, and Thiria (2019) and Acito, Diani, and Corsini (2020) used DL models to 
estimate CWV. The DL model in Acito, Diani, and Corsini (2020) estimates CWV values using 
only the flight height. It does not use solar zenith angle and atmospheric visibility, which are 
vital parameters for traditional CWV estimation methods. Despite these approaches utilizing 
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DL models to estimate various atmospheric parameters, there remains a reliance on physics- 
based RTMs for retrieving SR values from TOA imagery.

On the other hand, image-based approaches perform AC using only remotely 
sensed images captured by satellite or airborne sensors without requiring any atmo-
spheric parameters as input; instead, they only use the information in the image 
itself. The simplest image-based method is the Dark Object Subtraction (Chavez 
1988). It performs AC by finding the darkest pixels in the image and subtracting 
their values from all pixels. It works on the assumption that the few objects on the 
earth are in complete shade, so their reflectance values should be zero. Non-zero 
reflectance values of these objects are due to atmospheric scattering. The empirical 
line method (Smith and Milton 1999) forces image spectral data to match the target 
object’s reflectance spectra. At least two low and high reflectance targets must be 
identified from the scene. Another image-based AC is a Quick Atmospheric 
Correction (QuAC) (Smith and Milton 2012) is a model, which works on the assump-
tion that the mean spectrum of a collection of diverse material spectra is invariant 
from scene to scene. QuAC works well if at least 10 different objects are contained in 
the background. Image-based approaches are simple and computationally efficient, 
but their accuracy in seasonal and spectral variability situations limits these 
approaches from quickly obtaining a first-order approximation of SR values.

This motivated us to explore DL models to obtain accuracy that is comparable to 
physics-based methods while retaining computational efficiency. Moreover, DL mod-
els do away with the requirements of requiring any atmospheric parameters and 
geometric parameters as input. DL models offer several advantages: they automati-
cally learn features, simplifying model building and training; they are computation-
ally efficient compared to physics-based models (Yao et al. 2023). With their ability to 
capture complex nonlinear relationships between input and target variables, DL 
models are highly adaptable to changing atmospheric conditions and sensor char-
acteristics. DL enables the development of models with increasingly higher semantic 
layers and complexity through iterative learning processes, offering both accuracy 
and computational efficiency. DL’s potential has been demonstrated in various 
applications within remote sensing imagery, encompassing tasks such as change 
detection, segmentation, and classification (Fadaeddini, Eshghi, and Majidi 2018; 
Zhao et al. 2021; Peng, Zhang, and Guan 2019). Techniques like stacked autoenco-
ders, convolutional neural networks (CNNs), and vision transformers are harnessed for 
spectral-spatial and temporal feature extraction (Tarasiou, Chavez, and Zafeiriou 
2023; Gao, Chen, and Feng 2022; Chen et al. 2016). Additionally, DL models are 
increasingly applied in numerical weather prediction (Manil et al. 2020) and radiative 
transfer modelling (Liu and Liang 2023).

Here, we propose an innovative DL-based approach for atmospheric correction in 
remote sensing imagery, eliminating the reliance on atmospheric parameters, geo-
metric parameters, and LUTs and instead focusing solely on input images as shown in 
Figure 1(b). To our knowledge, no prior work has been published applying DL 
techniques to AC, opening up promising avenues in this domain. The DL model we 
have designed, named Season Aware Atmospheric Correction Network (SAAC-Net), is 
an end-to-end DL model and is trained with a spatially and seasonally rich dataset 
spanning diverse land covers (LCs) and seasons, enhancing its generalization and 

7368 M. SHAH ET AL.



performance. This is crucial as the reflectance of LC is subject to change with seasons 
due to variations in AOD (Acharya and Sreekesh 2013) and CWV (Patel and 
Kuttippurath 2022). SAAC-Net uses a CNN with residual blocks (RBs) with global and 
local skip connections to address the vanishing gradient problem challenge and foster 
improved training and learning capabilities.

The paper is organized as follows: A detailed discussion about the proposed approach 
containing dataset details and model architecture is covered in Section 2. Section 3 is 
dedicated to the SAAC-Net performance evaluation, extensive analysis, and discussions. 
Section 4 is dedicated to sensitivity analysis covering seasons, skip connections, residual 
blocks, and dataset size. Finally, Section 5 concludes the paper and discusses the future 
extension of this research.

2. Proposed approach

A block diagram of the proposed approach is shown in Figure 2. The TOA and BOA image 
pairs are obtained from the Landsat 8 OLI sensor. A synthetic seasonal band is introduced 
as the seventh band in the image data to augment the model’s understanding of seasonal 
variations. During the summer season, this band assumes a uniform value of 1 across all 
pixel locations, while during winter, it uniformly registers a value of 0. The subsequent 
step involves partitioning these images into patches, each measuring 128 � 128 pixels. 
These selected patches are then forwarded to the DL model for training.

Experiments have been conducted using Landsat 8 satellite data and Radiometric 
Calibration Network (RadCalNet) data to show the effectiveness of the proposed model 
details of which are provided in the next section.

Figure 2. Block diagram of the proposed approach.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7369



2.1. Dataset details

SAAC-Net is trained and tested using Landsat 8 satellite data, providing multispectral 
imagery of the Earth’s surface. It provides TOA and BOA image pairs, making it 
a suitable dataset for training and testing the SAAC-Net. The model’s performance is 
also evaluated with ground observations provided by the RadCalNet. This section 
discusses the Landsat 8 dataset (Roy et al. 2014) and the RadCalNet dataset (Bouvet 
et al. 2019).

2.1.1. Landsat 8 satellite data
Landsat 8 Operational Land Imager (OLI) provides both TOA and BOA image pairs with 30  
m spatial resolution and 16 days temporal resolution. We have used the following bands 
in the study: Blue (0.45μm − 0.51μm), Green (0.53μm − 0.59μm), Red (0.64μm − 0.67μm), 
Near-Infra-Red (NIR: 0.85μm − 0.88μm), Short-Wave-IR-1 (SWIR1: 1.57μm − 1.65μm), and 
SWIR2 (2.11μm − 2.29μm). Landsat 8 uses the LaSRC (Vermote et al. 2016) physics-based 
atmospheric correction algorithm to generate a BOA from a TOA. The training dataset 
uses different land covers to generalize SAAC-Net for spatial variations and different 
seasons to accommodate seasonal variations.

SAAC-Net is trained using a dataset comprising six Land Cover (LC) types from the 
International Geosphere-Biosphere Programme – IGBP global vegetation classification 
scheme, covering approximately 80% of India’s landmass, to provide spatial variability 
and generalization capabilities. This diverse dataset includes Urban Land, Crop Land, 
Deciduous Forest, Evergreen Forest, Fallow Land, and Waste Land, ensuring the model 
can adapt to different spectral signatures from various LC types. Additionally, including 
varied terrains accounts for significant variations in aerosol optical depth and column 
water vapour across India, enabling the model to generalize effectively.

India experiences four distinct seasons: Winter (December–March), Summer (April– 
June), Monsoon (June–September), and Post-Monsoon (October–December) (Division 
2020). These seasonal variations significantly influence atmospheric conditions, vegeta-
tion growth, and land surface characteristics, consequently top-of-atmosphere reflec-
tance values. In our study, we have focused on the extreme seasons of India, namely 
summer and winter, as they exhibit a substantial contrast in reflectance values. For 
instance, the mean TOA reflectance difference between summer and winter across all 
land covers is 0.04. To ensure data quality, we selected images with a cloud cover of less 
than 15% for this study. Notably, the rainy season has been excluded from our analysis 
due to the prevalence of extensive cloud cover during this period in India.

The specific LC and details of the training and testing dataset are given in Tables 1 and 2, 
respectively. Representative images from both the training and testing datasets are visually 
depicted in Figure 3. Twenty-one images of the summer and twenty-five of the winter 
season of 2019 and 2020 from six locations have been used to train the model. The size of 
each Landsat 8 image is 7681�7531 pixels. We perform patch-based image processing and 
divide each image into small, non-overlapping patches. Four hundred most informative 
patches of size 128�128 pixels using information entropy have been chosen from each 
image. Hence, our training dataset contains 18,400 patches of size 128�128 pixels, out of 
which 80% are used for training and 20% for validation. The trained model takes only 0.10  
seconds to perform AC for the patch of size 128�128 pixels.
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For testing, a similar representative dataset with spatial and seasonal variability has 
been constructed to analyse the performance of the proposed network. It is to be noted 
that the geographical locations representing each LC in the test dataset are different from 
the training set. A total of 4800 non-overlapped patches (800 for each location) were used 
to test the model.

Table 1. LC type and location for the Landsat 8 training dataset. All images are of months March, April, 
and May (Summer season) and November, December, and January (Winter season) of years 2019 and 
2020. Image size: 128�128 pixels. 3200 images per LC, except 2400 for Evergreen Forest.

Seq. 
No.

Land-cover 
Types Location Lat-Lon

Landsat 
Rowpath Summer Winter

1 Urban Land Kolkata, West 
Bengal

22.57°N, 
88.36°E

138044 20.04.2019, 
06.05.2019, 
06.04.2020, 
08.05.2020

30.01.2019, 
30.11.2019, 
01.01.2020, 
02.12.2020

2 Crop Land Hansi, Haryana 29.05°N, 
76.08°E

147040 03.04.2019, 
05.05.2019, 
04.03.2020, 
07.05.2020

29.01.2019, 
29.11.2019, 
30.10.2020, 
01.12.2020

3 Deciduous 
Forest

Sukma, 
Chhattisgadh

21.28°N, 
81.87°E

142045 31.03.2019, 
18.05.2019, 
02.04.2019, 
04.05.2019

10.01.2019, 
11.02.2019, 
28.12.2019, 
13.01.2020

4 Evergreen 
Forest

Arunachal West, 
Arunachal 
Pradesh

28.22°N, 
94.73°E

135041 14.03.2019 25.01.2019, 
25.11.2019, 
28.01.2020, 
19.12.2020, 
11.11.2020

5 Fallow Land Churu, Rajasthan 28.29°N, 
74.97°E

148040 26.04.2019, 
28.05.2019, 
12.04.2020, 
14.05.2020

04.11.2019, 
23.01.2020, 
08.12.2020, 
24.12.2020

6 Waste Land Jaisalmer, 
Rajasthan

26.92°N, 
70.91°E

150041 24.04.2019, 
10.05.2019, 
26.04.2020, 
12.05.2020

02.01.2019, 
03.02.2019, 
04.12.2019, 
21.01.2020

Table 2. LC type and location for the Landsat 8 testing dataset. All images are of months March, April, 
and May (Summer season) and November, December, and January (Winter season) of years 2019 and 
2020. Image size: 128�128 pixels. 800 images per LC.

Seq. No.
Land Cover 

Types Location Lat-Lon Landsat Rowpath Summer Winter

1 Urban Land Ahmedabad,  
Gujarat

23.02°N 
72.57°E

148044 14.05.2020 24.12.2020

2 Crop Land Jalandhar,  
Punjab

30.90°N 
75.85°E

148039 28.05.2019 08.12.2020

3 Deciduous Tuithiang, 23.73°N 135044 01.04.2020 29.12.2020
Forest Mizoram 92.72°E

4 Evergreen Tamenglong, 24.59°N 135043 01.04.2020 27.11.2020
Forest Manipur 93.39°E

5 Fallow Land Bikaner,  
Rajasthan

28.00°N 
73.30°E

149041 05.05.2020 29.11.2020

6 Waste Land Kutch,  
Gujarat

24.07°N 
69.52°E

150043 26.05.2019 20.11.2020
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2.1.2. RadCalNet data
RadCalNet (Bouvet et al. 2019) is an initiative of the working group on calibration and 
validation of the committee on earth observation satellites. It has automated ground instru-
ments to provide continuous SR measurements and other atmospheric parameters to derive 
TOA for different RadCalNet sites. All measurements are acquired every 30 min between 09:00 
and 15:00 h local time, in the spectral range from 380 nm to 2500 nm with 10 nm spectral 
resolution.

We chose three locations for the study as described in Table 3. For each site, we 
collected 15 data points for 2019–2021. We also ensured that the data of the Landsat 8 
image and RadCalNet data were the same. Based on the spatial resolution of the 
Landsat 8 OLI (30 m) and the representative region of RadCalNet with 30�30 pixels, 
this translated to 1 km�1 km region of interest (ROI) for RailRoad and a 3�3 pixel 
resulted into a 90 m�90 m ROI for La Crau and Gobabeb. The ROIs centred around the 
latitude/longitude of each region are shown in Table 3. By incorporating RadCalNet 
data into the experiments, the proposed model is rigorously tested and validated 
against SR captured using an on-site spectrometer, enhancing the credibility of the 
results.

2.2. SAAC-Net architecture

The proposed SAAC-Net, shown in Figure 4, is built upon a CNN structure incorporating 
cascaded RBs with global and local skip connections. This design choice brings several 
advantages to the model’s performance. Cascaded RBs enhance gradient flow, allowing 

Figure 3. The first row shows the training images (a - f), and the second row shows testing images (g - l) 
for the following LC in order from left to right - Urban land, cropland, Deciduous Forest, Evergreen 
Forest, Fallow land, and wasteland.

Table 3. RadCalNet data characteristics.
Site Land Cover ROI Latitude-Longitude No. of Datapoints

RailRoad - U.S.A. Waste Land 1km�1km 38.49°N,-115.69°E 15
La Crau - France Crop Land (Sparse Vegetation) 90m�90m 43.55°N, 4.86°E 15
Gobabeb - Namibia Waste Land 90m�90m −23.60°N, 15.110°E 15
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initial layers to learn quickly, and residual connections facilitate the training of deeper 
networks. They also boost the network’s representational capacity, enabling learning 
intricate hierarchical features. Additionally, skip connections provide implicit regulariza-
tion, prevent overfitting, and efficiently train different network parts by skipping non- 
useful layers, preserving gradient information, and enhancing accuracy.

SAAC-Net establishes a comprehensive learning mechanism by incorporating local and 
global skip connections. The architecture encompasses two distinct modules: the Local 
Residual Feature Extraction Module (LFEM) and the Global Feature Extraction Module 
(GFEM). This mechanism allows the model to extract and utilize information at various 
scales effectively. Including local skip connections ensures that information is efficiently 
exchanged between neighbouring layers within the network. It aids in the model’s ability 
to capture fine-grained details and subtle features in the data. On the other hand, the 
global skip connections allow for the integration of information from input to output of 
the network, enabling SAAC-Net to understand and exploit coarse-grained features across 
the entire dataset.

LFEM comprises shallow feature extraction blocks (FSFEB), cascaded RBs, and final 
feature extraction blocks (FFFEB). The FSFEB consists of two 3�3 convolution blocks with 
64 and 128 filters to extract the shallow features of the TOA image, which are then fed into 
the cascaded RBs. 

I� 1 ¼ FSFEB� 64ðITOAÞ (1) 

I0 ¼ FSFEB� 128ðI� 1Þ (2) 

The internal architecture of the RB is a variant of the block reported in (Kaiming et al. 2016) 
and shown in Figure 5. Each RB consists of two 3�3 convolution blocks with 128 filters 
and ReLU activation units. Throughout the model, we use 3�3 convolution kernels since 
deeper networks with small kernel size work well (Simonyan, Zisserman, and Zisserman 

Figure 4. The proposed SAAC-Net architecture for AC with LFEM and GFEM.
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2014). Dropout (30%) is introduced after the second convolution block to regularize the 
training of SAAC-Net. fðIn� 1Þ is the output after this dropout layer, which represents the 
features extracted from layer In� 1. Finally, a fusion of fðIn� 1Þ and In� 2 is added to produce 
an output of an RB. 

In ¼ fðIn� 1Þ þ In� 2 (3) 

The last residual block’s output is passed through the final feature extraction block (FFEB). 
FFFEB consists of two 3�3 convolution blocks with 64 and 7 filters to maintain the channel 
dimension of the output image. 

Inþ1 ¼ FFFEB� 64ðInÞ (4) 

ITOA;LF ¼ FFFEB� 7ðInþ1Þ (5) 

ITOA;LF represents the fine-grained features of the input TOA image generated by the LFEM, 
and it learns the non-linear spectral mapping between TOA and SR values. However, it 
loses spatial information due to many convolutions.

The GFEM module inputs the ITOA image. It applies the 1�1 convolution filters, 
extracting the coarse-grained features from the image and helping to preserve the spatial 
characteristics of the input image at the output (Litu et al. 2019). 

ITOA;GF ¼ FGFEB� 7ðITOAÞ (6) 

GFEB is the Global feature Extraction Block, which uses a 1�1 convolution filter, and ITOA;GF 

represents the coarse features of the input TOA image generated by the GFEM. It 
maintains the spatial resolution of the original image, and its coarse-grained features 
complement the LFEM features. Finally, fusion generates the BOA image by adding the 
coarse and fine features. 

IBOA ¼ ITOA;LF þ ITOA;GF (7) 

3. Results and discussion

This section presents comprehensive information pertaining to the experimental config-
uration, assessment metrics, and outcomes from the evaluation conducted on Landsat 8 
test data across different LCs and geographic regions. Results of the evaluation with 

Figure 5. Residual blocks used in the SAAC-Net.
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RadCalNet data and a comparison with other models are also provided. We also interpret 
and discuss results in the same section to enhance the flow and coherence of the paper.

3.1. Experimental setup

All experiments have been conducted on a workstation with a 16GB GPU equipped with 
an x86-based Intel processor that uses NVIDIA Pascal architecture (P5000/6000). After 
doing an empirical experiment with patch sizes of (128�128, 256�256) and learning rates 
(0.01, 0.001, 0.0001), we selected a patch size of 128�128 as it provides balanced spatial 
coverage with moderate computational complexity. This is substantiated by the consid-
eration that increasing the patch size would increase the number of parameters quad-
ratically, subsequently augmenting the memory requirements. Moreover, it is noteworthy 
that the 128�128 patch size effectively spans an area encompassing approximately 3.8  
km�3.8 km, sufficient to capture spectral variations. We use a 0.001 learning rate through-
out the training, L2 loss function, and ADAM optimizer with β1 (exponential decay rate for 
the first moment estimates) ¼ 0:9 and β2 (exponential decay rate for the second-moment 
estimates) ¼ 0:999 values for faster convergence and better stability. The entire code has 
been implemented in Python with Keras and TensorFlow open-source libraries.

3.2. Evaluation metrics

Statistical analyses were performed to evaluate the performance of SAAC-Net. We com-
pute the root mean square error (RMSE) to determine the statistical deviation of SAAC-Net 
predicted SR values from Landsat 8 LaSRC SR values, as shown in Equations 8. It quantifies 
accuracy, is easy to interpret, can compare methods, and suggests improvements. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnλ

i¼1 ðΔρi;λÞ
2

nλ

s

(8) 

where, nλ is the number of pixels in band λ. ρi;λ is the reflectance value in the band λ and 
pixel i, Δρi;λ is the difference of SAAC-Net predicted SR values and Landsat 8 LaSRC SR 
values.

The mean reflectance difference (MRD) is the mean of the difference between the 
reflectances of a SAAC-Net pixel and a Landsat 8 LaSRC pixel, which are in identical 
spectra and locations. This is computed in Equations 9. MRD attenuates reflectance due 
to the atmosphere, which can be used to correct the SAAC-Net SR. Overall, it is a simple 
and robust AC metric that can be combined with other metrics and applied across 
sensors. 

MRDðΔρλÞ ¼ ρSAAC� Net
λ � ρLaSRC

λ (9) 

where, Δρλ is the MRD between model predicted SR values and Landsat8 LaSRC SR values; 
ρSAAC� Net

λ and ρLaSRC
λ is the mean of SAAC-Net predicted and Landsat 8 LaSRC reflectance 

values of band λ, respectively, as calculated in Equation 10. 

ρλ ¼

Pnλ
i¼1 ρi;λ

nλ
(10) 
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where, nλ is the number of pixels in band λ. ρi;λ is the reflectance value in the band λ and 
pixel i.

We also used the structural similarity index (SSIM) and correlation coefficient (r) to 
measure the reliability of the SAAC-Net image. SSIM is a perceptual measure that uses 
colour, texture, intensity, and structural information to assess AC accurately. It matches 
the structure, luminance, and contrast between the SAAC-Net BOA and the reference BOA 
image and evaluates SAAC-Net’s ability to preserve the features of the scene. The 
correlation coefficient measures the linear relationship between the reflectance values 
of pixels of SAAC-Net and reference images to assess their similarity. It indicates the 
spatial consistency of the proposed method across the SAAC-Net image.

3.3. Model evaluation with Landsat 8 test data

The model’s performance (with 8RB) was evaluated using RMSE, MRD, SSIM, and r for the 
Landsat 8 test dataset (cf. Table 2). Quantitative results for LCs are given in Table 4, and 
the qualitative results are shown in Figure 6. As per Table 4, the positive MRD value for all 
LCs suggests that the model predictions are overestimated compared to the Landsat 8 
LaSRC SR values. This could potentially be attributed to the SAAC-Net’s assumptions of 
lower scattering and absorption compared to the actual atmospheric conditions.

Table 4. Performance of SAAC-Net on Landsat 8 test data for bias, structural similarity, and 
coherence. All images are of months March, April, and May (Summer season) and November, 
December, and January (Winter season) of years 2019 and 2020.

Land cover Types Landsat Rowpath RMSE MRD SSIM r

Urban Land 148044 0.051 0.005 0.96 0.99
Crop Land 148039 0.032 0.002 0.99 0.99
Deciduous Forest 135044 0.023 0.002 0.99 0.99
Evergreen Forest 135043 0.024 0.002 0.99 0.99
Fallow Land 149041 0.063 0.005 0.96 0.98
Waste Land 150043 0.059 0.006 0.96 0.98

Figure 6. Results of various LCs. The first row shows the Landsat 8 BOA images (a - f), and the second 
row shows SAAC-Net-estimated images (g - l) for the following LC in order from left to right - Urban 
land, cropland, Deciduous Forest, Evergreen Forest, Fallow land, and wasteland with RMSE − 0.043, 
0.030, 0.025, 0.023, 0.055, 0.053 respectively.
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Notably, urban land, fallow land, and wasteland exhibit higher RMSE values when 
compared to other LC types. The higher RMSE in urban land is due to its heterogeneous 
structure with different reflectance properties and a higher degree of scattering and 
absorption due to pollutants, shadows, and specular reflections from urban facilities. 
The DL method will need an ancillary data source to account for these factors. Fallow 
land and wasteland are homogeneous but brighter than other areas, causing higher 
RMSE. It was observed that the average TOA reflectance of these areas was about 1.5 
times more compared to other LCs. The mean TOA reflectance of wasteland and fallow 
land is 0.23, while for urban land, cropland, deciduous forest, and evergreen forest, it is 
0.16, 0.17, 0.12, and 0.11, respectively. The other reason for the higher RMSE for fallow and 
wasteland is that atmospheric interference varies over space and time. The subtle differ-
ence in LC composition is challenging to detect and affects the accuracy of the AC. The 
other LCs, namely, cropland, deciduous, and evergreen forests, show lower MRD and 
RMSE values due to their homogeneous land cover, distinctive spectral properties, 
reduced variations in reflectance values due to homogeneity, and lower atmospheric 
interference.

The model exhibits high SSIM, suggesting that the structure of the Landsat BOA 
image and the model-predicted image are very similar. A high r points out that 
model-predicted images correlate well with the Landsat BOA images, and SAAC- 
Net has maintained spatial consistency across BOA images. Combining the results 
of Table 4 and Figure 6, one can observe the fidelity of the SAAC-Net in emulating 
the Landsat 8 values.

The scatter plot between SAAC-Net predictions and Landsat 8 LaSRC SR values for the 
blue band of one patch from the test location of the evergreen forest (Landsat ID 135043) 
is shown in Figure 7. The plot suggests a strong coherence between the model’s predic-
tion and Landsat 8 LaSRC SR. The 1:1 line is shown for visual comparison, and we can 

Figure 7. Scatter plot of blue band of one image patch of location 135043 Evergreen forest of date 
01.04.2020. The X-axis represents SAAC-Net predicted SR values; the Y-axis represents Landsat 8 LaSRC 
SR values. r = 0.96, line fit: 0:003� x þ 0:99.
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observe over and under-estimated model values, but overall, it maintains an excellent 
correlation with the reference SR values.

Band-wise values of all metrics are shown in Table 5. It is seen that the RMSE 
values for the blue band are the highest in urban land, fallow land, and wasteland 
as compared to the other bands, which is because the blue band has a shorter 
wavelength and is most sensitive to atmospheric interference. The blue band is 
sensitive to minor variations in soil or vegetation. These variations are difficult to 
correct, leading to higher RMSE. The low MRD values across bands indicate that 
the model bias is absent or very small. Overall, the model predicts well across all 
bands and LCs.

Apart from good prediction accuracy, the SAAC-Net takes less time to infer. It 
takes 0.10 sec on CPU to infer from the patch of size 128�128 pixel and 0.02 sec 
on GPU. These are faster than the physics-based model timings reported in 
(Prankur et al. 2021). Hence, the SAAC-Net balances the trade-off between predic-
tion accuracy, computational complexity, and time.

3.4. Model generalization: evaluation over different LC and geographic location

The SAAC-Net model is trained on six LCs, as described in Section 2.1. To validate 
the effectiveness and generalization capability of the model, it is essential to 
evaluate model performance on LCs on which it has not been trained. Therefore, 
we tested it on plantation and shrubland LCs in India. The location chosen for the 
study is Kerala state, India (Latitude: 10.1632, Longitude: 76.6413) and Ratlam city 

Table 5. Band-wise performance metrics of SAAC-Net on Landsat 8 LaSRC data. All images are of 
months March, April, and May (Summer season) and November, December, and January (Winter 
season) of years 2019 and 2020.

Land-cover Types Landsat Rowpath Metric Blue Green Red NIR SWIR1 SWIR2 All Bands

Urban Land - 148044 RMSE 0.071 0.049 0.042 0.050 0.048 0.042 0.051
MRD −0.03 0.00 0.00 0.00 0.01 0.02 0.005
SSIM 0.84 0.88 0.86 0.86 0.88 0.90 0.96
r 0.96 0.98 0.98 0.97 0.98 0.99 0.99

Crop Land - 148039 RMSE 0.014 0.019 0.022 0.041 0.044 0.037 0.032
MRD 0.00 0.00 0.00 0.00 0.00 0.00 0.002
SSIM 0.97 0.96 0.96 0.93 0.93 0.95 0.99
r 0.91 0.90 0.92 0.86 0.89 0.93 0.99

Deciduous Forest - 135044 RMSE 0.011 0.012 0.013 0.041 0.029 0.019 0.023
MRD 0.00 0.00 0.00 0.00 0.00 0.00 0.002
SSIM 0.96 0.97 0.96 0.93 0.95 0.97 0.99
r 0.96 0.96 0.96 0.93 0.94 0.95 0.99

Evergreen Forest - 135043 RMSE 0.011 0.012 0.011 0.043 0.029 0.018 0.024
MRD 0.00 0.00 0.00 0.00 0.00 0.00 0.002
SSIM 0.95 0.97 0.97 0.93 0.95 0.96 0.99
r 0.97 0.97 0.98 0.92 0.93 0.96 0.99

Fallow Land - 149041 RMSE 0.088 0.052 0.052 0.064 0.058 0.055 0.063
MRD −0.05 0.00 0.00 0.00 0.01 0.02 0.005
SSIM 0.86 0.92 0.91 0.88 0.91 0.91 0.96
r 0.95 0.97 0.97 0.96 0.97 0.98 0.98

Waste Land - 150043 RMSE 0.079 0.047 0.045 0.057 0.056 0.055 0.059
MRD −0.04 0.00 0.00 0.00 0.01 0.02 0.006
SSIM 0.86 0.91 0.90 0.88 0.91 0.90 0.96
r 0.96 0.98 0.98 0.97 0.97 0.98 0.98
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of Madhya Pradesh State, India (Latitude: 23.3315, Longitude: 75.0367). The results 
for plantation and shrubland LCs are shown in Table 6. The RMSE for both LCs is 
near the average RMSE of the SAAC-Net model for all locations shown in Table 4, 
which is 0.042. This shows that the model performs well for other LCs than the 
ones it is trained on.

It is crucial to see how the model behaves for images captured from different parts 
of the world with different seasons. We tested the SAAC-Net model with locations 
such as Arizona, U.S.A. (Latitude: 34.0489, Longitude: −111.0937) and Dubai, UAE 
(Latitude: 23.4241, Longitude: 53.8478). Arizona state observes four different seasons: 
Winter (Dec.–Feb.), Spring (Mar.–May), Summer (Jun.–Aug.), and Fall (Sep.–Nov.), with 
mean and max temperatures of 8°C to 40°C. Dubai observes mainly two seasons, 
Summer and Winter, with 16°C minimum to 50°C maximum temperature. The major 
LC types in Arizona are Urban Land, Crop Land, and Waste Land, whereas Waste Land 
and Urban Land are major LC types in Dubai.

The results for each evaluation metric for the U.S.A. and UAE are shown in Table 6. The 
RMSE of Arizona state is near the average RMSE of the SAAC-Net model, which is 0.042. 
However, the RMSE for Dubai is a little higher than the average RMSE of the model. This is 
because the average reflectance of this region is very high; it is nearly 0.27. This is similar 
to the high RMSE results we obtained for Fallow Land and Waste Land – which are high 
reflectance LCs, as shown in Table 4 This experiment proves the model’s generalization 
capability for geographic locations with more extreme seasons than the training dataset.

We also interpret generalizations through heatmaps as they provide a visually intuitive 
representation of spatial data distributions and illustrate spatial variability by colour- 
coding data intensity across a geographic area (Shaito and Elmasri 2021). The heatmaps 
for SR help understand the variation in reflectance values across landscapes and enhance 
SR estimation by revealing data patterns. Figure 8 provides a visual representation in the 
form of heatmaps of SR for the above LCs across various spectral bands. These heatmaps 
illustrate a distinct pattern, with high reflectance values over Dubai’s desert land LC 
compared to other LCs. Additionally, the heatmaps reveal a uniform trend in the blue 
spectral band, where reflectance values for all locations are near zero. These observations 
offer valuable insights into the spectral characteristics and reflective behaviours asso-
ciated with the different LCs across different bands.

We also show in Section 4.4 that the RMSE of the model trained only with two LCs is not 
significantly different from the model trained using six LCs. Thus, the above experiments show 
that the model generalized well for different LCs, seasons, geographic locations, and datasets.

Table 6. SAAC-NET generalization over different LC and geographic location.
Location LC Types Date Season RMSE MRD SSIM r

Kerala, India Plantations 29.10.2021 Winter 0.051 0.034 0.88 0.90
02.03.2021 Summer 0.045 0.030 0.79 0.88

Bikaner, India Shrubland 31.12.2022 Winter 0.045 0.030 0.80 0.89
11.04.2022 Summer 0.050 0.031 0.77 0.83

Arizona, U.S.A. Urban Land, 27.01.2022 Winter 0.038 0.024 0.83 0.87
Crop Land, 17.04.2022 Spring 0.039 0.024 0.82 0.88
Waste Land 22.07.2022 Summer 0.042 0.026 0.79 0.87

10.10.2022 Fall 0.044 0.025 0.82 0.92
Dubai, UAE Urban Land, 09.12.2022 Winter 0.067 0.037 0.80 0.94

Waste Land 04.09.2022 Spring 0.068 0.040 0.75 0.93
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Figure 8. Heatmap of predicted SR values for Dubai(First row), Arizona, U.S.A. (second row), shrubland 
(Third row) and plantation (Fourth row) for bands Blue, Green, Red, NIR, SWIR1 and SWIR2 (left to 
right).

Table 7. Performance of SAAC-Net when compared with 
RadCalNet data.

Site RMSE MRD SSIM r

RailRoad 0.096 0.092 0.88 0.86
La Crau 0.025 0.021 0.93 0.90
Gobabeb 0.039 0.021 0.91 0.88

Table 8. Band-wise RMSE for RadCalNet locations.
Site Blue Green Red NIR SWIR1 SWIR2

RailRoad 0.093 0.089 0.080 0.112 0.109 0.089
La Crau 0.042 0.029 0.028 0.063 0.043 0.044
Gobabeb 0.031 0.031 0.046 0.052 0.064 0.051
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3.5. Model generalization: evaluation with RadCalNet data

As described in Section 2.1.2, RadCalNet provides in-situ measurements of SR values. We 
use the MRD, RMSE, SSIM, and r between the SAAC-Net predicted SR and RadCalNet 
measurements to check the model’s performance. The result for each metric and 
RadCalNet location is shown in Table 7, and band-wise RMSE values are shown in Table 8.

It is essential to note that the geographical locations used for RadCalNet data differ 
from the SAAC-Net training data, with the latter originating from India. At the same time, 
RadCalNet encompasses locations in the U.S.A., France, and Namibia. Despite this dis-
parity, the model exhibits low RMSE and high correlation coefficient values, signifying 
robust generalization capabilities and the potential to deliver accurate results across 
diverse global locations. RadCalNet locations yield higher MRD values and lower r values 
than the Landsat test locations (cf. Table 4). It could be due to the smaller geographical 
area of RadCalNet measurements over 1 km�1 km or 90 m�90 m. The RMSE values of the 
railroad location are higher than the other two locations, as the Railroad is a semi-arid 
region with sparse vegetation and is characterized by hills and valleys, which is a very 
different terrain from the training dataset location.

3.6. Comparison of SAAC-Net performance with other models

The SAAC-Net, at best, can match the performance of the Landsat 8 physics-based 
LaSRC model, as the training data is derived from it. To study the performance of 
SAAC-Net vis-a-vis Landsat 8 LaSRC, we used RadCalNet SR values as ground truth. 
Taking five data points from each location of RadCalNet from the year 2021, we 
computed RMSE, MRD, and r between SR values of RadCalNet with SAAC-Net 
predicted values and Landsat 8 LaSRC values. The results are shown in Table 9. 
As expected, the results show that the RMSE between the SAAC-Net-RadCalNet pair 
is higher than the RMSE between Landsat 8 LaSRC-RadCalNet pair. However, the 
increase is nominal for La Crau and Gobabeb, considering that SAAC-Net learns 
only using TOA and does not use any atmospheric parameters.

Figure 9 shows the band-wise SR spectra of SAAC-Net, RadCalNet, and Landsat 8 
LaSRC at three RadCalNet locations. Both SAAC-Net and Landsat 8 LaSRC over-
estimate values for railroad location at all bands except Blue. However, SAAC-Net 
has better estimates for Green, Red, NIR, and SW1 bands. For LaCrau, Landsat 8 
LaSRC is a better estimator, as SAAC-Net underestimates all bands except blue. The 
landscape is semi-arid, with agricultural land, grassland, shrubland, and rocky out-
crops. The Gobabeb, a desert terrain, has Landsat 8 LaSRC overestimating at all 
bands, and SAAC-Net estimates are well matched for NIR, SW1, and SW2 bands.

Table 9. Relative performance comparison of SAAC-Net and LaSRC with RadCalNet. Subscript 1 
indicates a pair (SAAC-Net, RadCalNet), and subscript 2 indicates a pair (Landsat 8 LaSRC, RadCalNet).

RadCalNet Sites RMSE1 RMSE2 MRD1 MRD2 r1 r2

RailRoad 0.037 0.021 0.030 0.017 0.87 0.90
LaCrau 0.024 0.022 0.016 0.017 0.82 0.86
Gobabeb 0.015 0.012 0.014 0.009 0.98 0.99
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Overall, it can be observed that the SAAC-Net SR spectra follow trends and are in good 
agreement with the RadCalNet SR spectra at all the bands.

Very few researchers have used an end-to-end DL model to perform AC. One 
such approach implements MAIAC emulator (Duffy et al. 2022). The authors have 
designed a DL-based emulator of the MAIAC model using hyperspectral images 
provided by the Advanced Himawari Imager (AHI) sensor of the Himawari-8 satellite. 
It is difficult to compare quantitatively due to differences in the dataset and satellite 
used in both studies. Hence, we present a qualitative comparison with another DL- 
based approach for AC (Duffy et al. 2022) in Table 10.

Figure 9. Band-wise SR spectra of SAAC-Net, RadCalNet, and Landsat 8 LaSRC. The X-axis represents 
wavelength, and the Y-axis represents reflectance. (a) railroad, (b) LaCrau, and (c) Gobabeb.

Table 10. Qualitative comparison of the proposed approach with other end-to-end DL-based 
method (Duffy et al. 2022).

Parameters Deep Learning Framework – Paper Our Proposed Approach

Architecture Bayesian deep neural network CNN with Residual blocks
Physics-based model MAIAC LASRC
Dataset Himawari-8 Landsat-8
Spectrum Hyperspectral Multispectral
Seasonal parameter No, but the seasonal analysis is done Yes
Sensitivity analysis Missing Present
Qualitative results Missing Present
Bands Red, Green, Blue, NIR, SWIR1, SWIR2 Red, Green, Blue, NIR, SWIR1, SWIR2
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4. Sensitivity study

We perform a sensitivity study to understand the importance of the season, RBs, skip 
connections, and dataset size.

4.1. Impact of season

As described earlier, seasons are one of the vital parameters as AOD and CWV significantly 
change with seasons. Hence, we have added an extra synthetic season band to guide the 
DL model. To validate the significance of this synthetic season band, we conducted 
experiments with the SAAC-Net model (eight Residual Blocks) under two scenarios: one 
with the season band (V1) and one without it (V2), utilizing the Landsat 8 test dataset. 
Table 11 shows that the RMSE of the model without the season band (V2) increases 
considerably for all LCs, which justifies the importance of feeding season information to 
the model while estimating SR values.

4.2. Impact of GFEM

A model with eight RBs was trained with the following variations to validate the need for 
the GFEM. The following notations have been used: V1: Original GFEM; V3: GFEM without 
the 1�1 convolution block; and V4: Without GFEM.

The result of this experiment is shown in Table 11. It is clear that the model V1 exhibits 
the lowest RMSE for every LC, and model V4 has the highest RMSE. This is because the 
local path loses the spatial characteristics of the image, and hence, the GFEM is necessary. 
Images shown in Figure 10 support the claim of using GFEM. It is visible that the images 
predicted from the model with V1 are very similar RMSE,0:009, SSIM,0:99, r,0:99 to 
Landsat 8 BOA images. Images predicted by V3 have a poor performance - RMSE,0:014, 
SSIM,0:99, r,0:18. Images predicted by the model without GFEM lose all spatial infor-
mation from the original image and have the poorest performance metrics. Thus, we 
establish the efficacy of the GFEM block.

4.3. Number of residual blocks

We train the SAAC-Net using six LCs and study the model’s performance with 8, 16, and 32 
RBs. Table 12 shows that the model with eight RBs performs better than the other two 
models. It can be because 16/32 RBs increase the depth to capture complex features, but 

Table 11. Impact of the season on RMSE. V = Variant. V1: 8 RB model with synthetic 
season band. V2: 8 RB model without synthetic season band. V3: GFEM without the 
1�1 convolution block, and V4: Without GFEM. Note: The number with each LC 
denotes Landsat rowpath.

Land-cover Types V1 V2 V3 V4

Urban Land − 148044 0.051 0.057 0.073 0.269
Crop Land − 148039 0.032 0.037 0.028 0.175
Deciduous Forest − 135043 0.023 0.027 0.022 0.144
Evergreen Forest − 135043 0.024 0.027 0.022 0.144
Fallow Land − 149041 0.063 0.066 0.093 0.319
Waste Land − 150043 0.059 0.060 0.097 0.319
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they struggle to capture the diversity of the features for various LCs. Achieving a delicate 
balance between the model’s depth (number of layers) and width (number of filters) 
within SAAC-Net is pivotal for optimal performance. While RBs alleviate the vanishing 
gradient problem, the gradient can still become very small as they propagate through the 
deeper layers. This can result in no significant performance gain with 16/32 RB models, as 
we observe that for a model with 8RBs and 32RBs, the average RMSE across all LCs is 0.042.

Moreover, no model results in the lowest RMSE for all six LCs. The RMSE values of 
cropland, deciduous, and evergreen forests are low compared to other LCs, irrespective of 
the number of RBs. This is because these LCs exhibit very low variability in the data. Also, 
adding RBs (e.g. 32) increases the number of parameters (e.g. 9.6 M parameters), and the 

Table 12. RMSE performance of SAAC-Net trained on six LCs (Full data) and two LCs (Limited data) 
with 8/16/32 residual blocks. MP: Million parameters. Note: The number with each LC denotes Landsat 
rowpath.

8 RB (2.5 MP) 16 RB (4.8 MP) 32 RB (9.6 MP)

LC Types Full Data Limited Data Full Data Limited Data Full Data Limited Data

Urban Land − 148044 0.051 0.066 0.053 0.063 0.055 0.064
Crop Land − 148039 0.032 0.035 0.032 0.034 0.031 0.035
Deciduous Forest − 135044 0.023 0.023 0.024 0.025 0.025 0.025
Evergreen forest − 135043 0.024 0.025 0.025 0.025 0.025 0.026
Fallow Land − 149041 0.063 0.076 0.059 0.070 0.063 0.072
Waste Land − 150043 0.059 0.073 0.059 0.067 0.057 0.068

Figure 10. Impact of GFEM on band-wise generated images of 128�128 pixels size of LC urban 
land − 148044. (a) Landsat 8 BOA images, (b) predicted images: V1 - original GFEM 
(RMSE , 0:009, SSIM , 0:99, r , 0:99), (c) predicted images: V3 - GFEM without 1�1 convolution 
block (RMSE , 0:014, SSIM , 0:99, r , 0:18), (d) predicted images: V4 - without GFEM 
(RMSE , 0:23, SSIM , 0:65, r , 0:10).
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model complexity increases without significant performance improvement. Hence, in this 
paper, we selected the eight RB SAAC-Net model for experiments in the paper.

4.4. Model performance on limited dataset

Training a model with an extensive dataset involves heavy computational resources and 
time. Moreover, there are cases where TOA images of different LC types are unavailable 
for some sensors. Hence, testing the model’s effectiveness trained on limited data is 
crucial. In one such experiment, we trained the model using only two LCs – urban land 
and cropland. The reasons for choosing these two LCs are as follows: urban land has more 
variation than any other LC type, and cropland covers a maximum part of the Indian 
subcontinent. The training was done using 6400 patches of these two LCs and testing on 
4800 patches of all LCs.

Table 12 also shows the RMSE values of different LC types with limited data. The results 
show that the RMSE of the 8/16/32 RB model trained with 2-LC increases for urban land, 
cropland, evergreen forest, fallow land, and wasteland. One can easily relate the interplay 
between accuracy and time complexity. Training with all 6-LCs increases the model’s 
accuracy as one observes lower RMSE. However, a higher accuracy will also increase the 
training time for the model by approximately three times, as found during our 
experiments.

This experiment also tests the model’s generalization capability, i.e. how it performs for 
an unseen LC. One can observe from Table 12 that the model generalizes well, as RMSE for 
a model trained with two LCs is not drastically different from RMSE results for a model 
trained with six LCs.

5. Conclusion and future work

This paper proposes SAAC-Net, an end-to-end season-aware DNN, to predict SR from 
TOA images. The designed and trained model is used to predict SR values without 
using information about atmospheric parameters such as AOD, water vapour, and air 
pressure. The predicted SR of the SAAC-Net has been assessed with the Landsat 8 
LaSRC physics-based model and on-site measurements provided by RadCalNet. Results 
have shown the potential and effectiveness of the DNN-based approach in perform-
ing AC.

Although training of the model is compute-intensive, testing SAAC-Net to the given 
image requires a very low computational load, making the model suitable for real-time 
applications. For instance, it takes about 0.10 s for our model with eight RBs to perform AC 
on input images of size 128�128 pixels on a CPU and 0.02 on a GPU.

The SAAC-Net model was trained using TOA and BOA image pairs generated by the 
Landsat 8 LaSRC algorithm, which relies on a physics-based model. While theoretically 
robust, such physics-based systems often entail significant computational costs and 
necessitate numerous assumptions and simplifications. Notably, the physics-based 
model exhibits an error rate of approximately 10–15% (Badawi et al. 2019) in estimating 
SR due to inherent approximations in estimating various atmospheric parameters and the 
underlying assumptions of RTM. Consequently, the performance of the SAAC-Net model 
is inherently tethered to the limitations of the physics-based model upon which it is 
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trained. In an ideal research scenario, our training dataset would encompass 
a comprehensive array of BOA measurements derived through on-site photospectrometry 
conducted across a broad and diverse geographical area. This would serve as 
a benchmark dataset for training the DL model for AC, minimizing the influences of the 
physics-based model’s limitations. However, in practice, the acquisition of such a dataset 
is a challenging task. Conducting on-site photospectrometry to cover diverse geographic 
regions spanning varying environmental conditions and diverse landscapes is a resource- 
intensive task that demands both time and substantial financial investments.

While addressing seasonal and spatial variability, this study does not account for the 
temporal variability that occurs over extended timeframes, potentially reducing the 
model’s effectiveness when applied to imagery obtained decades later, primarily due to 
the evolving atmospheric conditions and alterations in aerosol density over time (Singh 
et al. 2022). Such temporal discrepancies introduce a dataset shift problem (Shah et al. 
2023), potentially compromising the model performance. This requires a more compre-
hensive DL model that accounts for spatial and seasonal variations and temporal changes. 
We plan to study the temporal evolution and design a spatially, seasonally, and tempo-
rally aware DL model for performing accurate AC.
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