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Abstract

An artificial intelligence (AI) model’s performance is strongly influ-
enced by the input features. Therefore, it is vital to find the opti-
mal feature set. It is more crucial for the survival prediction of the
glioblastoma multiforme (GBM) type of brain tumor. In this study, we
identify the best feature set for predicting the survival days (SD) of
GBM patients that outrank the current state-of-the-art methodologies.
The proposed approach is an end-to-end AI model. This model first
segments tumors from healthy brain parts in patients’ MRI images, ex-
tracts features from the segmented results, performs feature selection,
and makes predictions about patients’ survival days based on selected
features. The extracted features are primarily shape-based, location-
based, and radiomics-based features. Additionally, patient metadata is
also included as a feature. The selection methods include recursive
feature elimination (RFE), permutation importance (PI), and finding
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the correlation between the features. Finally, we examined features’
behavior at local (single sample) and global (all the samples) levels.
In this study, we find that out of 1265 extracted features, only 29
dominant features play a crucial role in predicting patients’ survival
days (SD). Among these 29 features, one is metadata (Age of pa-
tient), three are location-based, and the rest are radiomics features.
Furthermore, we find explanations of these features using post-hoc in-
terpretability methods to validate the model’s robust prediction and
understand its decision. Finally, we analyzed the behavioral impact of
the top six features on survival prediction, and the findings drawn
from the explanations were coherent with the medical domain. We find
that after the Age of 50 years, the likelihood of survival of a patient
deteriorates, and survival after 80 years is scarce. Again, for location-
based features, the SD is less if the tumor location is in the central
or back part of the brain. All these trends derived from the devel-
oped AI model are in sync with medically proven facts. The results
show an overall 33% improvement in the accuracy of SD prediction
compared to the top-performing methods of the BraTS-2020 challenge.

Keywords: Brain tumor segmentation, feature importance, survival
prediction, interpretability

1 Introduction

Brain cancer patients’ survival rate is lower than other cancer types. The
Glioblastoma Multiforme (GBM), or simply, Glioblastoma, is the most invasive
and frequently diagnosed type of brain tumor [1, 2]. Due to its infiltrative and
diffuse characteristics, the World Health Organization (WHO) has categorized
it as a Type-4 tumor [3]. Following the central-brain-tumor registry of the
United States (CBTRUS)-2021 report, there were a total of 83,029 deaths in
the USA alone between 2014 and 2018 due to malignant brain tumors and
other central nervous system disorders (CNS) tumors [2].

1.1 Brain tumor segmentation

Usually, the brain anatomy analysis is done using MRI images, which are
non-invasive, and provide high-resolution and detailed information about soft
tissues. Recently, deep-learning-based approaches are becoming more popu-
lar for segmentation from medical images due to the introduction of powerful
GPUs [4]. UNet-based approaches have generated robust segmentation results,
as evidenced by their great performance in the medical image segmentation
domain [5–7]. Brain Tumor Segmentation (BTS) separates cancerous tissues
from healthy tissues, which can further dissect into necrosis, enhancing tumor
or edema. In many standard benchmarks, such as in Brain Tumor Segmenta-
tion Challenge (BraTS) [8–10] counts the whole tumor (WT), tumor core (TC)
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and enhancing tumor (ET) subregions for the evaluation of the segmentation
methods.

The state-of-the-art BTS methods use 2D, 3D, or hybrid UNet [11]. The
UNet performance is further improved by assembling attention blocks, [7, 12–
15] residual connections between layers [16] and dense connections between
layers of the network [6, 7, 17]. In the BraTS–2020, Isensee et al. [18] pro-
posed an improvised version of the ’No-New Network’ model. Likewise, in the
BraTS-2021 challenge, an optimized version of the same network was proposed
at the conference of Medical-Image Computing and Computer-Assisted Inter-
vention (MICCAI) 2021 [19]. The above segmentation techniques suggest that
automatic segmentation is a complicated method due to the high variance
in structure, shape, location, texture of tumor tissues, lack of ample images
in the available standard dataset, and an imbalance between cancerous and
healthy tissues. Thus, a robust segmentation method is desirable to develop
an accurate and transparent survival prediction system.

1.2 Survival days prediction

The Survival Days (SD) prediction is far more complex as it depends on many
factors such as accurately segmented brain tumor [20], ample dataset, clinical
information such as age, gender, health condition, treatment, biological char-
acteristics, and qualitative image properties from radiographic images [21].
Though hugely challenging, it is crucial to improve early diagnosis, treatment
planning, and post-treatment analysis of GBM patients [22, 23]. The GBM
patients have a dismal survival record, with a median chance of survival of
fewer than 12 months [24]. Various studies also show that the survival of pa-
tients varies with their age [2, 20, 25]. SD prediction from the BraTS challenge
can be further categorized into long-term survival (where survival days are >
450 days), mid-term survival (300 to 450 days), and short-term survival (<
300 days). Here, accuracy and Spearman ranking coefficient (SpearmanR) are
used to evaluate the performance of the models.

1.3 End-to-end methods for BTS and SD

Since both the tumor segmentation and SD prediction are individually com-
plex, therefore, various research groups are trying to develop an end-to-end
model by integrating a tumor segmentation with the SD prediction method to
make the system smooth and less complicated for SD prediction [26]. In this re-
gard, Mckinley et al. [7] proposed a 3D-2D densely connected encoder-decoder
architecture for the segmentation task and thereby extracted the features. An
ensemble of linear regressor and random forest classifiers was trained using age
and features extracted from BTS to predict survival days. Bommineni et al.
[27] proposed four identical networks for segmentation, where networks were
trained on each class label and multiple class labels. They used the linear re-
gressor for SD prediction and trained the model on the surface area, volume,
spatial location, age, and resection status features.
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1.4 Interpretability

Usually, BTS and SD models are not tested for their interpretability. In this
regard, an end-to-end model that combines automated segmentation, feature
extraction, and survival prediction with interpretability is a promising option.
For the BTS task, we implemented 3D U-Net [28]. The features were ex-
tracted from segmentation results using various wavelet-based, location-based,
shape-based, and radiomic-based filters. The radiomic features provide valu-
able insights into GBM prognosis but will be limited in providing biological
insights. The several reasons for these limitations include - tumor heterogene-
ity, imaging limitation, and, most importantly, the lack of biological context.
They can provide insights into the phenotypic structure but cannot explain
the underlying molecular processes. Integrating radiomics with genomics, pro-
teomics, or clinical data is necessary for a holistic view. This task is very
complex and requires heavy computational resources and expertise. Therefore,
the present work examines interpretability from the phenotypic perspective
based on publicly available BraTS 2020 challenge data [29].

In addition, we used recursive feature elimination (RFE), Permutation
Importance (PI), and correlation matrix to reduce the number of features. Fur-
ther, we studied the correlation map, Partial Dependency (PD) plots [30, 31],
Shapley Additive exPlanations (SHAP) plots [32, 33], and Kaplan-Meier (KM)
plots [34] to analyze the predictions. SHAP identifies the most important fea-
ture contributing to the prediction. This can aid the clinician in understanding
the decision-making process and making treatment-related decisions. PDP will
help to visualize how a particular radiomic feature affects prediction across dif-
ferent patients. This establishes the relationship between radiomic features and
prediction and also reveals nonlinear dependencies amongst features. Thus,
both can help make informed decisions and offer valuable insights into GBM
prognosis.

In summary, our work focuses on the points listed follows:

• Finding an optimal feature set that augurs well for SD prediction.
• Validation of SD prediction on the BraTS-2020 dataset.
• Providing detailed explanations and rationale for the selection of the
dominant features set.

• Interpretation of the model behavior and biomedical inference of the top six
most important features.

All the obtained results are validated through the BraTS-Challenge-2020
evaluation platform [29].

2 Methods

2.1 End-to-End approach for SD prediction

The structural diagram of the proposed end-to-end approach is shown in Figure
1. The multiple parametric MRI images are the input to the model such as
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T1-weighted (including contrast agent), T2-weighted, and fluid-attenuated in-
version recovery (T2-FLAIR) images. The segmentation model is built on 3D
U-Net architecture, known as the ”No-new Network” [28]. The architecture
relies on 3D UNet, which is a well-proven architecture for biomedical segmen-
tation tasks and is robust for tumor segmentation. The network consists of a
symmetric five-layered encoder and decoder structure. It is a simple, easy-to-
implement architecture with 8.3M parameters. This makes it suitable for the
resource-constrained 16GB GPU and 256GB RAM environment while main-
taining good segmentation performance on BraTS 2020 dataset. For detailed
architecture, please refer to Supplementary Figure A1. For this segmentation
model’s training, patches with sizes of 128× 128× 128 are randomly selected
from the training dataset. The obtained mean Dice scores for ROIs are 0.819
(Whole Tumor: WT), 0.766 (Tumor Core: TC), 0.702 (Enhancing Tumor:
ET) for BraTS2020 training set and 0.880 (WT), 0.858 (TC), 0.759 (ET) for
validation set respectively.

Input
Segmented 

Image
Feature Extraction 

Module

Survival days prediction 
Module

3D segmentation 
module

Image & Radiomics based 
features

Feature selection 
Module

X AI

Figure 1 The workflow of the proposed end-to-end approach for the SD prediction.

The network and segmentation of the tumorous tissue from the training set
are shown in Figure A1(a) of the supplementary section. In addition, Figure
A1(b-d) also exhibits a qualitative comparison between the given input (T2-
FLAIR) MRI image predicted image and ground truth. The SD predictor
model was trained using the dataset’s segmented results and ground truth. In
contrast, it was tested on the features extracted from the segmented results
of the validation set. The feature selection module finds the best group from
these extracted features, which are then used to predict survival days. Finally,
the SD prediction module is investigated for its decision, understanding its
generic (global/overall) and specific (local/sample-wise) behavior on survival
days. The details of the feature extraction, a feature selection module, the sur-
vival prediction model, and its interpretability are discussed in the subsections
below.
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2.2 Feature extraction module

The feature extraction module obtained the image-based features [25] and
radiomics-based features [35] (Table 1 lists the specifics of the features).

Here, the image-based features are extracted by determining the tumor’s
shape and location. In contrast, radiomics-based features are extracted from
necrotic and non-enhanced tumor regions using wavelet and Laplacian of Gaus-
sian (LoG) filters (with σ value 1 to 5). Here, the lower value of σ highlights
fine textures, and the higher σ focuses on coarse textures. The wavelet fil-
ters denoise the images and capture spatial and global signals [36]. The LoG
filter pinpoints the blob centers and approximates its size, shape, and ori-
entation [37]. Thus, we obtained 1264 features (1225 radiomics-based + 39
image-based). We also considered the metadata, e.g., the Age of patients, as a
feature. As a result, 1265 features in total are being taken into account for the
evaluation. Since some of these features can be redundant or not contribute to
the prediction, a feature selection procedure is essential.

Table 1 Feature-set lists 1264 features (1225 radiomics based + 39 image based).

Image-based features

Shape-based features
(27)

Surface area of ROIs, the volume of ROIs, proportion of ROIs,
proportion ratio between each ROI, the area-to-volume ratio
of ROIs, and amount of tumor.

Location-based
features (12)

Centroid of ROIs, the distance between the center of ROIs
and the center of the brain.

Radiomics-based features

Shape features (13) Elongation, major axis length, least axis length, mesh volume,
flatness, maximum diameter row, maximum diameter column,
surface area, sphericity, and surface volume ratio.

First-order statistical
features (144)

Energy, maximum intensity value, minimum intensity value,
mean, entropy, absolute deviation, inter-quartile range, vari-
ance, skewness, percentile, kurtosis, uniformity, and median.

Gray-level features
(1068)

Neighboring gray-tone difference matrix (NGTDM), Gray-
level co-occurrence matrix (GLCM), Gray-level size-zone
(GLSZ), Gray-level run-length matrix (GLRLM), and Gray-
level dependence matrix (GLDM).

Note: The values within the parenthesis represent the Number of features extracted.

2.3 Feature selection module

The primary goal of feature selection methods is to eliminate unimportant or
repetitive features. Here, we employed Recursive Feature Elimination [38] and

Page 6 of 41AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



7

Permutation Importance [39] as feature selection methods. RFE is a back-
ward feature selection method that re-fits the model after iteratively ranking
the features according to their importance and eliminating the least impor-
tant features. The description of the chosen dominant features identified by
RFE are shown in supplementary table A1. On the other hand, Permuta-
tion importance finds influence in the model score by randomly re-arranging
a single feature value. The pseudo-code of PI is shown in algorithm 1. This
technique breaks the connection between the desirable feature and the out-
put feature. The model’s score decline demonstrates how largely it depends on
that feature. Thus, we weighted the features according to their importance. In
general, dominating features are given greater weight than other features. Zero
or negative weights indicate no contribution of the feature for the prediction.
Therefore, we removed them, bringing the set down to 180 features. These
180 features were further examined using the Spearman correlation coefficient
(SpearmanR) with an absolute cutoff value of 0.5. It is clear from the corre-
lation values that the necrotic, active, and whole tumor centroids are firmly
connected, given that they have similar characteristics in common. As a result,
we narrowed the set of features to 29 by eliminating redundant features.

The pipeline for feature selection is as follows:

• We eliminated the features based on the Permutation Importance weights
(which define their contribution to the outcome). The threshold value of
the weights is 100. Any features with PI weight <100 are eliminated. This
results in 180 prominent features.

• Further, we eliminate the weaker features from these 180 features by finding
the SpearmanR and a sorting process. For this, (a) we take features one by
one (from the 180 feature set), starting with the feature having the least PI
weight, and find its SpearmanR with the rest of the 179 features, (b) then
we select the features which are having correlations less than 0.5, (c) then
from this selected features, we identify the feature which is having highest
PI weight value and use it to replace the feature that is having least PI
weight (that we chose in step (a)). This process is repeated for each feature
in the 180 feature set. That means the loop will run 179 times. Lastly, we
find 29 dominant features (having less correlation) out of 180 features.

A detailed description of the selected dominant features using PI is shown
in supplementary table A2.

2.4 Survival prediction module

The Random Forest Regressor (RFR) [40] is based on ensemble learning, where
decision trees (DT) are fundamental building blocks. Each DT was created
using random samples from the training set; hence it is called a Random
Forest. This method is widely used as it has been proven accurate and robust
[40] across multiple complex problems, including SD prediction [41, 42]. The
RFR model is often more successful than other models because the outcomes
obtained by averaging the prediction from each tree result in lower variability.
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Algorithm 1 Permutation Importance (PI) Algorithm:

Input: Trained model m on the Dataset D
Compute: The metric S of the model m on dataset D (for instance R2

metric for a regressor model)
for each feature j : do

for each repetition k in K: do
Arbitrarily re-arrange column j of Dataset D to produce a noisy

variant of the dataset say, D̂k,j .

Measure the metric sk,j of model m on variant Dataset D̂k,j .

end for
Measure importance I of each feature j defined as:
Ij = s− 1

k

∑k
k=1 sk,j

end for

Additionally, randomization during tree growth and splitting helps prevent
overfitting [43]. Hence, the RFR model is robust for predicting brain tumor
patients’ survival [44]. Here, a five-fold cross-validation technique was used to
train the RFR model. Also, the hyper-parameters of the model were fine-tuned
using grid search. The fine-tuned parameters are the maximum tree depth,
maximum number of features at each split, number of trees, and the minimal
sample size required to be at a child node at a split point.

2.5 Interpretability methods for the proposed SD module

Understanding the decisions taken by AI or Machine learning (ML) models
is essential. Especially in the medical domain, the interpretability of such an
AI model is vital to increase its reliability. Generally, the non-linearity in an
AI model makes them hard to decipher. That is why we use model-agnostic
methods like SHAP [32, 33] and PDP [30, 31] to find the interpretability of
the proposed model.

The primary objective of the SHAP method is to determine how much
each feature impacts the prediction for a given instance. The SHAP-value of
a feature is the average marginal contribution of that feature to the value of
the predecessor set among all possible permutations of the feature set. It can
be expressed as in equation 1 [45].

(Φj) =
1

| Π(N) |
∑

π ϵ Π(N)

marginal contribution of feature j

in a coalition π︷ ︸︸ ︷
(v(P̂π

j ∪ j)− (v(P̂j)) (1)

where, (Φj) is the SHAP-value of feature of interest j, Π(N) is the possible
coalitions of all feature set, π is the specific coalition, feature of interest is j,
v is contribution of feature(s), (P̂π

j ∪ j) is the predecessor set of feature j in
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a particular coalition, including the j feature whereas P̂j is predecessor set of
feature j in a particular coalition, excluding j feature. E.g., if π = {A,B,D},
j = B and v{A} = 8, v{B} = 10, v{C} = 9, v{A,B} = 18, v{A,D} =
20, v{B,D} = 22 and v{A,B,D} = 25, whereas the possible predecessor sets
in this example) in a particular coalition π = {A,B,D} :{ϕ,A} and marginal
contribution (MC) of j(=B) is calculated as: v{A,B} − v{A} = 20− 8 = 12.
Further, calculating the MC of feature j across all the possible coalitions and
averaging will give us a SHAP value (ΦB) of feature B. In summary, it shows
each feature’s influence on predicting survival days. It helps to understand the
global behavior of the model by combining the explanation of each sample
(Please see the Supplementary Table A4 for a more detailed explanation of
this example). Algorithm 2 displays the pseudo code to find the SHAP value
for a feature.

The PDP displays the global effect of the feature on the target. The PDP
considers all the samples and can show and examine the global association
between survival days and input variables. The partial dependence function is
represented as :

f(xs) = Ec[f(xs, xc)] (2)

where xs are the desirable feature(s) for which we want to plot partial
dependency and xc are the remaining features used to train the model. xc = x′

s

and X = xs + xc is the whole feature set. In PDP, we assume that feature
subset xs and xc are uncorrelated to each other and hence can be calculated
using average interaction effect [31] as:

f(xs) =
1

n

n∑
i=1

f(xs, xc) (3)

Algorithm 3 displays the pseudo code to find the samples’ Partial dependency
(PD) values.

Algorithm 2 Calculating SHAP -value for a feature:

Input: Number of feature N and their respective real value v signifying
their contribution. The contribution vector v of a particular feature is
calculated through perturbation feature values of coalition π. More details
can be found here [46]. k is the number of sampling permutations

Output: SHAP value ϕj for the feature j ϵ N .
for Iteration : 1, 2, ...K: do

Randomly select π from set of all permutation Π(N)
for j ϵ N : do

Calculating predecessor set Pπ
i = {j ϵ N | π(j) < π(i)}.

ϕj = ϕj +
v(P̂π

j ∪ j)−(v(P̂j))

K
end for

end for

Page 9 of 41 AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



10

Algorithm 3 The steps of obtaining PD Value of samples are:

Input: The unique feature’s values xs = x1, x2, ...xn, where x is feature
of interest

Ouput: PD plot of desirable feature.
Steps:
for i ϵ (1, 2, . . . , k): do

Replace the original x1 values with the constant x1i in the training
samples.

computes the predicted value vector from the altered copy of the
training samples.

compute the average of the prediction to find f ′(x1i).
end for

The PDP for x1 is obtained by plotting the pairs {x1i, f
′(x1i)} for i =

1, 2, ..n

2.6 Performance Metrics

Using multiple metrics for the performance evaluation provides the robust-
ness information of the employed model. Hence, we quantified our model
predictions on widely used metrics for survival prediction, such as accuracy
[28, 42], mean squared error (MSE) [28, 42], median squared error (medianSE)
[28, 42], standard-deviation standard error (stdSE) [28, 42, 47], Spearman
ranking coefficient [28, 42, 48].

2.7 Dataset BraTS-2020

The training BraTS 2020 [8–10] dataset includes 369 3D MRI samples for
the segmentation and metadata (resection status information, Age, and sur-
vival days). Out of this, 236 patients’ metadata are provided for the SD
prediction task. The validation BraTS 2020 dataset contains 125 MRI sample
images and metadata of 29 patients. Each sample instance includes the Fluid-
attenuated-inversion recovery (T2-FLAIR), T2-weighted MRI preoperative
images, T1 weighted (T1), post-contrast T1-weighted (T1-ce), and correspond-
ing ground truth. In addition, the dataset is skull-stripped, aligned to the
identical anatomical structure, and re-sampled to an isotropic resolution. The
segmentation class labels, as defined in the BraTS-2020, are label-0 for back-
ground voxels, label-1 for necrotic and non-enhanced tumor voxels-(NCR or
NET), label-2 for edema voxels-ED, and label-4 for enhancing tumor voxels-
ET.

3 Results and Discussion

In this work, the prediction model was evaluated through the BraTS evalua-
tion platform [29]. In addition, we have used the BraTS-2020 top-performing
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models as benchmarks to compare our results. Finally, this section dis-
cusses the results of the proposed end-to-end model for its performance and
interpretability.

3.1 Correlation study of dominant features

To gain a better insight, we have plotted the correlation matrix of the features
as shown in Figure 2 (Refer to Supplementary Table A3 for the annotation of
the features). The plot shows that most features are highly uncorrelated, which
signifies that they have captured distinct properties of phenotypes. Further-
more, the histogram in Figure 2 validates that most of the selected features
correlate from -0.13 to +0.17, suggesting they are uncorrelated, and it justifies
the merits of our chosen features.

+1

0

-1

Figure 2 Correlation matrix of feature-set obtained through PI method. The histogram
plot on the right-hand side depicts the range and the count for all the correlations in the
heat map. (Refer Supplementary Table A3 for features annotation)

3.2 Survival days (SD) prediction results

The comparison of our survival days (SD) prediction results with top-ranking
methods of BraTS 2020 are shown in Table 2. A robust method must perform
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well on multiple performance metrics apart from accuracy, as each quantifies
the models on different parameters. Hence, we compared the proposed model
with benchmark models [7] and reported the improvement as computed using
equation 4. Here the percentage of improvement ϕ for each performance metrics
x for our proposed model P given by:

ϕ(x) =
Proposed model(P )− Top ranking model(S)

Top ranking model(S)
× 100 (4)

With this, the survival prediction result of the proposed method shows a
33.33% improvement in accuracy. There is a 19.13% improvement in MSE,
which measures the variance around the fitted regression and indicates the
deviation of model prediction from the actual one. However, it is sensitive
to outliers [49]. In the case of median SE, there is a 60.80% improvement,
which uses the median value of the residuals and is unaffected by the outliers.
All these results obtained using various metrics indicate the robustness of the
prediction [49]. We can see a 2.62% improvement in stdSE and a 181.03%
improvement in SpearmanR coefficient often used to measure the relation be-
tween the therapy response and the survival days [48]. As shown in Table 2,
our model has performed consistently in all the standard metrics used for SD
prediction.

Table 2 SD performance comparisons with top-ranking models on the training and
validation datasets BraTS 2020. The numbers of other models are obtained from the
validation leader-board [29]. NA: Not Available

Dataset Method Accuracy MSE medianSE stdSE SpearmanR

Training

Mckinley et al.[7] NA NA NA NA NA

Asenjo and Soĺıs et al.[15] 0.822 55499.71 11351.02 147319.00 0.833

Bommineni et al.[27] NA NA NA NA NA

Ali et al.[50] 0.641 62305.61 05745.64 200788.00 0.632

Proposed Method 0.538 60668.61 16037.10 125873.00 0.754

Validation

Mckinley et al.[7] 0.414 098704.66 36100.00 152176.00 0.253

Asenjo and Soĺıs et al.[15] 0.520 122515.80 70305.26 157674.00 0.130

Bommineni et al.[27] 0.379 093859.54 67348.26 102092.00 0.280

Ali et al.[50] 0.483 105079.40 37004.93 146376.00 0.134

Proposed Method 0.552 79826.24 14148.89 148288.00 0.711

3.3 Interpretability of SD prediction model

This section presents a detailed analysis of the influence of features on SD
prediction. The SHAP results provide local and global impact details, whereas
PDP helps analyze features’ global impact.

3.3.1 SHAP analysis results

SHAP depicts the importance of features in predicting a sample by calculating
SHAP values. It shows the contribution of features to the expected prediction
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Figure 3 SHAP summary plot of dominant features: Each blue dot represents a single pa-
tient. The X-axis shows the Shapley (SHAP) value of a specific patient, which signifies the
feature’s effect on the survival days for the particular patient. The absolute higher SHAP
value indicates a higher impact on survival days, where a sign indicates increasing or de-
creasing average survival days. The Y-axis shows features arranged according to importance
(high to low) calculated through the average of absolute SHAP-value. On the opposite side,
feature value shows high (red) or low (blue) values.

among all the feature combinations. The SHAP value shows how much a sin-
gle feature affects the forecast, whereas the signs indicate whether the impact
is positive or negative on the prediction outcome. Figures 3 and 5 show the
SHAP summary and waterfall plots, respectively. The SHAP-summary plot
helps us to visualize the global (generalize) and local (as it plots for every
sample) impact of features on the model. In contrast, the waterfall plot allows
us to visualize and study the features’ impact on an individual sample. It will
enable us to explore the role of features and their value on the particular pre-
diction, where we can minutely examine each feature behavior for any desirable
sample. In the SHAP-summary plot, X-axis displays the SHAP value, which
signifies the impact of features on the target feature (Here, the target feature
is the survival days). The greater the value (absolute), the more significant the
effect on the target component, whereas the sign (+/-) indicates whether that
impact is positive or negative. In the Y-axis, features are listed in the order
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of importance (from top to bottom). Each point on the summary plot repre-
sents a sample, and the point’s color represents the value of the corresponding
instance. Here, blue denotes a low feature value, and red a high one.

From Figure 3, we observe that Wavelet-LLL firstorder InterquartileRange
(WIR) feature has the highest importance. It is a first-order radiomic feature
extracted using the wavelet low pass filter and depicts the distribution of spe-
cific pixel values. WIR measures the pixel intensity between the 25% to 75%
percentile range. From the plot, we can observe that the samples with interme-
diate or high feature values (purple and red color) ofWIR contribute positively
to the prediction, which has a maximum positive SHAP value. In other words,
the intermediate or high feature value of theWIR feature increases the SD of
patients. It is also apparent that there is an aggregation of large samples (with
blue color) within the SHAP value range of -15 to -25 (refer to the WIR fea-
ture row listed on the Y-axis). It signifies that the majority of the samples
fall into this SHAP range. The samples within this range are responsible for
reducing patients’ SD. Also, it shows that tumor intensity (pixel value) infor-
mation falls within this range, reducing the SD. It signifies that the intensity
of pixels of a tumor in an MRI plays a significant role. Both Aboussaleh et al.
and Bae et al. mention this fact [51–53].

The 2nd most crucial feature is Age. From Figure 3, it is clear that samples
with the lower feature value of Age have positive SHAP values. In other words,
the lower Age increases the SD of patients. This observation aligns with med-
ical science inference, i.e., the Age of GBM patients is crucial in determining
SD, i.e., the lower the Age, the more the survivability [54].

The 3rd most crucial feature is the cent wb x shown in Figure 3. It is a
location-based feature representing the centroid coordinate of a whole tumor
along the X-axis of an MRI image (a physical coordinate). The plot shows
that this feature negatively impacts prediction with intermediate and higher
feature values. That means the higher feature value is responsible for reducing
the survival days of patients. Here, the X-axis represents the axial view [55],
and higher feature values represent the physical coordinates of the central part
of the brain. This plot signifies that tumors in the brain’s central and latter-
mid parts will reduce patients’ survival days [56]. Similar resemblance can be
observed for cent at x and cent nec x features, which are centroid of active
tumor and centroid of necrosis, respectively.

The 4th most important feature is the log-sigma-2-0-
mm3D firstorder Kurtosis (LFK). It is a first-order radiomic feature extracted
using a LOG filter, which signifies the distribution of voxels without consider-
ing their spatial relations [57]. This feature measures the tailedness (outliers)
of data distribution. From the plot, we can observe that low kurtosis values
are increasing SD, and higher kurtosis values are reducing the SD of patients.
Most samples fall within the SHAP- value range of -20 to 60.

The 5th most crucial feature is log-sigma-2-0-mm-3D glcm Correlation. It
is a second-order radiomic feature extracted using a LOG filter, which measures
the inter-relationship of intensity between neighbor voxels [57]. The plot shows
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that higher feature values are responsible for increasing SD, and lower feature
values reduce SD. In other words, the higher correlation between voxels value
increases SD, and low correlation values reduce SD.

The 6th most important feature is wavelet-HHH firstorder Kurtosis. It is
a first-order radiomic feature extracted using a wavelet filter that uses high-
pass filters in the series of z, y, and x directions. The distribution of voxels
is independent of their spatial relations, similar to the 4th most important
feature. Here, the plot shows that lower feature values are responsible for
increasing SD (for more information, see Figure 4 for SHAP-distribution plot).

In summary, comparing all the features, we can say that the range of SHAP
values for all the features is -40 to +40 (in X-axis). Also, with the decreasing
of feature importance, the range of SHAP value decreases. That means the
features with a low SHAP range have a lower impact on the SD.

Note: Most samples and their SHAP-value can also be verified through
Figure 4, which shows the respective features’ SHAP-value and feature value
distributions.

(a) (b) (c)

(d) (e) (f)

Figure 4 SHAP value and its distribution for the top six dominant features, say (a) WIR,
(b) Age, (c) cent wb x, (d) log-sigma-2.0-mm-3D firstorder Kurtosis, (e) log-sigma-1-0-
mm-3D glcm Correlation, (f) wavelet-HHH firstorder Kurtosis. X-axis displays the feature
value of respective features whereas Y-axis displays the SHAP-value of the respective fea-
ture. Each blue dot indicates a specific sample. And bars show histograms of feature value.
The rest of the features SHAP value distribution can be found in Supplementary Figure A3.

Again the SHAP-waterfall plot provides the visual interpretation of features
contribution for a single prediction. Figure 5 is a SHAP-waterfall plot for a
single sample. The average SD is shown on the X-axis, and the features are
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arranged on the Y-axis in descending order according to their SHAP values
(from top to bottom). From this plot we can analyze, how much the features are
impacting negatively (blue) or positively (red) and thereby shift the prediction
from the expected outcome E[f(x)]. The expected outcome is the average of
all the outcomes for all the samples. We observe that for our example sample
(for which the plot is generated), the model output is f(x) = 331.732. The
expected output is E[f(x)] = 478.91. This deviation in the model outcome can
be understood by quantifying the influences of each of the features.

The SHAP value of each feature in Figure 5 depicted this quantification.
By adding all of the SHAP values from each feature, it is possible to determine
how much each feature (N) contributed to the model output. This is given
by f(x) = E(f(x)) +

∑
N SHAP . Here the

∑
N SHAP represents the sum of

the SHAP value of all the features. From this analysis also we can see that
the feature Age is having a higher impact on the model outcome. For this
sample, the Age value is 71.37 and it reduces the average survival days by 39.33
days (- (minus) value indicates a reduction in SD). Similarly, cent wb x value
is 164.651, which is also reducing SD by 28.22 days. Whereas mapping Age,
cent wb x features to SHAP-summary Plot (Figure 5) or SHAP-distribution
plot Figure A3 which shows global impacts. We can extract similar observances
of reducing SD for these features. For e.g., visualizing Age, cent wb x feature on
SHAP-summary Plot, which shows a higher value of these features are reducing
SD. Similarly, visualizing Age, cent wb x feature on SHAP-distribution plot
Figure A3 also shows a reduction in SD. This proves that features show the
same behavior both globally and locally.

Further, more information was derived by combining SHAP summary
(Figure 3), SHAP-distribution plot (Figure 4), and PDP of the top 6 dominant
features (Figure 6) which is explained in Section 3.3.2.

3.3.2 PDP analysis

A PDP shows a marginal effect between desirable and target features (Survival
Days) [30]. It shows how a dependent variable changes when an explanatory
variable changes, provided all other variables remain constant. If changing
the value of a particular feature creates more variation in the average sur-
vival days indicates that the feature is crucial. In this analysis, we consider
the top six features according to their importance (with respect to their
absolute SHAP value). These are WIR, Age, cent wb x, LFK, log-sigma-1-
0-mm-3D glcm Correlation, and wavelet-HHH firstorder Kurtosis. The PDPs
of the dominant six features are shown in Figure 6 (and plots of the rest of
the features are shown in Figure A2 Supplementary section). The PDPs were
arranged in the order of importance (higher to lower) obtained through the
SHAP summary plot (Figure 3).

Furthermore, visualizing the PDPs, we found the marginal impacts are in
line with the order of importance of features that supplements SHAP-value
analysis. The detailed analysis of the top six features is: The marginal effect
of WIR feature on the survival days is shown in Figure 6. The trend shows
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Figure 5 SHAP-waterfall plot of dominant features. This plot shows the features’ impact
on a particular instance. Each row in the Figure shows how the negative (blue) or positive
(red) contribution of each feature shifts the value from the expected output (E[f(x)]) to the
model predicted value (f(x)). f(x) = E(f(x))+ shapley value of each feature. Value besides
every feature row shows their respective observed value.

value sharply increases within the range 100 to 300, reduces within the 300-
350 range, and remains saturated within 350-800 intensity value. It indicates
that intensity heterogeneity is very high in the range from 100 to 300, which
causes a sharp increase in marginal impact. This suggests that intra-tumor
tissues are highly heterogeneous. Comparing PDP (Figure 6(a)) with SHAP
(Figure 3) and its distribution plots (Figure A3 (a)), we can conclude that this
intensity range between 100-300 is decreasing SD (testified through a decrease
in SHAP value). Hence we can conclude that tumor pixel intensity within this
range is detrimental to a patient’s survival. Also, as mentioned in this study,
higher tumor heterogeneity is associated with increased malignancy [58]. This
also complies with the other studies, which suggest that wavelet filters help
capture enhanced texture features [58, 59].

Similarly, from the PDP of the Age feature (Figure 6(b)), we can observe
the trend of marginal effect, which shows a maximum deviation in marginal
effects for lesser Age patients, signifies maximum impacts on SD. Further, the
marginal effect reduces with the increasing Age of patients. Comparing SHAP
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Figure 6 PDP analysis of the top six features. This plot depicted the marginal effect of
the (a) WIR, (b) Age, (c) cent wb x, (d) log-sigma-2.0-mm-3D firstorder Kurtosis, (e) log-
sigma-1-0-mm-3D glcm Correlation, (f) wavelet-HHH firstorder Kurtosis on the survival
days. Here, X-axis shows values of the respective feature, whereas Y-axis shows the average
rate of change (marginal-impact) respective feature value creates on the target feature. The
vertical bar on the X-axis shows most of the samples’ distribution. The rest of the features
for PDP can be found in Supplementary Figure A2.

summary and SHAP-distribution plots, we can observe that after 60 years of
Age, there is a decrease in SD (as there is a decrease in SHAP-value beyond
this range). Whereas, the PD plot for the cent wb x feature (shown in Figure
6 (c)) is the physical coordinate of the whole tumor. The plot shows that the
marginal effect is more significant if the centroid is within the range of value,
i.e., 75-112 (approx.), and less significant for the 113-160 range of value. Also,
comparing these ranges to the SHAP distribution plot, we can observe the
former range of values is increasing the SD and the latter is reducing the SD,
which signifies tumor lesions in the central or latter part are detrimental to
patients.

At the same time, the log-sigma-2.0-mm-3D firstorder Kurtosis feature is
a radiomic first-order statistical information that measures the peakedness of
data distribution. For a normal distribution, kurtosis (k) is 3. If k > 3, the
dataset tends to have significant outliers. If k < 3, the dataset has fewer or
no outliers. PD plot (Figure 6(d)) shows for k = 3; there is a higher marginal
impact on SD. Comparing PDP with SHAP and SHAP-distribution plots, we
can conclude that, for most samples, k is 3, and it increases SD. At the same
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time, there are enough samples with k > 3, decreases SD. It signifies that there
are considerable amounts of outliers or intra-heterogeneity among samples. As
mentioned by Steven et al. [60], diffusion kurtosis imaging works on a similar
principle of capturing non-normal distribution behavior, which signifies tissue
heterogeneity. It is observed that the survival days are positively skewed [61].

The log-sigma-1-0-mm-3D glcm Correlation is a radiomics feature that
calculates the joint likelihood of occurrence of the given pixel pairs with the
specified intensity value. At the same time, the gray-level co-occurrence ma-
trix explores spatial relationships between pixels at a specific distance and
direction. From the PDP (Figure 6(e)), we can observe that if the pixel pairs
correlation is more than or equal to 0.6 value, it impacts the SD more. Similarly,
observing the correlation threshold of 0.6 in the SHAP and SHAP-distribution
plot, one can observe that it impacts positively (having a positive SHAP value).
Also, it is mentioned by Sanghani et al. in their study [62], which shows texture
features played a crucial role in SD prediction.

Further, wavelet-HHH firstorder Kurtosis is a first-order statistical feature
like log-sigma-2.0-mm-3D firstorderKurtosis (the 4th most feature), but it is
extracted using wavelet filters. Comparing their PDPs (Figure 6(d) and (f))
shows both capture kurtosis information but in different dimensions. From the
PDP (shown in Figure 6(f)), we can observe that the kurtosis value is steeply
increasing between 0 to 100 and then stagnant for the rest of the values.
Further, observing SHAP- distribution, we can conclude that most samples are
in this range, and samples near 1 − 10 values are decreasing the SD, and the
rest are increasing the SD. However, some samples are sparsely distributed,
signifying that they are outliers.

All these signify the importance of these features in determining the SD.
With the above analysis, we find the Age, WIR, cent wb x, LFK, log-sigma-
1-0-mm-3D glcm Correlation, and wavelet-HHH firstorder Kurtosis plays a
crucial role in determining a patient’s SD. Similarly, we can analyze other re-
maining features. Finally, we agree that the WIR feature could tell us about
tumor heterogeneity associated with high malignancy. Again, the Age feature
showed us the trend of survivability, where the survival chances decrease with
the patient’s increasing age (this is further validated by the Kaplan-Meier
(KM) [34] plot as shown in the Supplementary Figure A4). At the same time,
the centroid of tumors enabled us to locate tumors in the central or latter-
central part, which are detrimental for patients. All these analyses using the
SHAP and PDPs are analogous to medical findings and related studies. This
signifies the model’s reliability and validates the explainability methods such
as SHAP and PDP.
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4 Limitations of the proposed approach and
future prospect

The SHAP and PDP techniques are the post-hoc methods that interpret the
model after the completion of training. However, for the further understand-
ing of a model, the study of the intrinsic characteristics may help to an extent.
Functional imaging like PET, fMRI, and MRS can provide insights into GBM
by capturing molecular or physiological information not captured by normal
MRI or CT Scans. The methods like the Neural Ordinary Differential Equation
model (NODE) can provide the learning behaviour of a model, especially to un-
derstand the spatiotemporal deep feature extraction of a segmentation model
[63]. Further, the diffusion imaging modalities such as diffusion kurtosis Imag-
ing [64] may help us to understand the underline biological and pathological
characteristics of GBM. However, these kind of functional imaging are more
complex to analyze, has a high variability across imaging sessions, are more
susceptible to noise, and are also expensive. In short, they face several chal-
lenges for routine GBM prognosis [65, 66]. Still we believe, integration of these
modalities with conventional MRI techniques will enhance the understanding
of GBM with added model transparency and interpretability.

5 Conclusion

We have proposed an end-to-end approach for the SD prediction task. We
have identified the 29 most dominant features that help predict SD accurately.
Again, we validate the optimality of these features using correlation and his-
togram plots. The trained model performs better on multiple performance
metrics. Also, it predicts a more accurate SD than the top-ranking method of
the BraTS-2020 competition. Further, we also explore the interpretability of
the model to understand its decision globally and locally using post-hoc meth-
ods, i.e., SHAP and PDP. Observing these plots, we found that first-order
statistical features, Age, location-based and texture features play a crucial role
in prediction. Also, these interpretability methods can provide valuable insights
into the model that can give human-understandable inferences. The inferences
obtained for six dominant features using these interpretability methods were
in line with medical facts. We also find that WIR, Age, and location-based
features influence the most in predicting survival days. We further verify this
conclusion using the KM estimation method on the metadata available with
the BraTS dataset. Thus, the model is robust in predicting brain tumor pa-
tients’ survivability. In addition, the interpretability methods can help us to
understand model behavior at multiple levels. This will ultimately help to de-
velop trust between medical experts and ML models and incorporate it into
clinical practices.
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[40] Fernáandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need
hundreds of classifiers to solve real world classification problems? The
journal of machine learning research. 2014;15(1):3133–3181.

[41] Puybareau E, Tochon G, Chazalon J, Fabrizio J. Segmentation of Gliomas
and Prediction of Patient Overall Survival: A Simple and Fast Procedure.
In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T,
editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries. Cham: Springer International Publishing; 2019. p. 199–
209.

Page 24 of 41AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html


25

[42] Agravat RR, Raval MS. Brain tumor segmentation and survival predic-
tion. In: International MICCAI Brainlesion Workshop. Springer; 2019. p.
338–348.

[43] Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS, et al. Random
survival forests. Annals of Applied Statistics. 2008;2(3):841–860.

[44] Rajput S, Agravat R, Roy M, Raval MS. Glioblastoma multiforme patient
survival prediction. arXiv preprint arXiv:210110589. 2021;.

[45] Rozemberczki B, Watson L, Bayer P, Yang HT, Kiss O, Nilsson S, et al.
The Shapley Value in Machine Learning. arXiv preprint arXiv:220205594.
2022;.

[46] Molnar C. Interpretable Machine Learning A Guide for Making Black
Box Models Explainable. Leanpub; 2021.

[47] Pan X, Zhang T, Yang Q, Yang D, Rwigema JC, Qi XS. Survival pre-
diction for oral tongue cancer patients via probabilistic genetic algorithm
optimized neural network models. The British Journal of Radiology.
2020;93(1112):20190825.

[48] Molina G, Chawla A, Clancy TE, Wang J.: The correlation between the
proportion of patients with pancreatic ductal adenocarcinoma who re-
ceived neoadjuvant therapy and overall survival between 2004 and 2015.
American Society of Clinical Oncology.

[49] Minoru.: regression - What does the median absolute error metric
say about the models? URL:https://stats.stackexchange.com/q/253892
(version: 2017-04-13) accessed: 2021-06-12. Cross Validated.

[50] Ali MJ, Akram MT, Saleem H, Raza B, Shahid AR. Glioma Segmentation
Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple
Features Fusion. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries. Springer International Publishing; 2021. p. 189–
199.

[51] Aboussaleh I, Riffi J, Mahraz AM, Tairi H. Brain tumor segmenta-
tion based on deep learning’s feature representation. Journal of Imaging.
2021;7(12):269.

[52] Bae S, Choi YS, Ahn SS, Chang JH, Kang SG, Kim EH, et al. Ra-
diomic MRI phenotyping of glioblastoma: improving survival prediction.
Radiology. 2018;289(3):797–806.

[53] Tessamma T, Ananda Resmi S. Texture Description of low grade and high
grade Glioma using Statistical features in Brain MRIs. ACEEE; 2010. .

Page 25 of 41 AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



26

[54] ASCO ASoCO.: Brain Tumor: Statistics. Available from: https://www.
cancer.net/cancer-types/brain-tumor/statistics.

[55] Mahmoudzadeh AP, Kashou NH. Interpolation-based super-resolution
reconstruction: effects of slice thickness. Journal of Medical Imaging.
2014;1(3):034007.

[56] Fyllingen EH, Bø LE, Reinertsen I, Jakola AS, Sagberg LM, Berntsen
EM, et al. Survival of glioblastoma in relation to tumor location: a sta-
tistical tumor atlas of a population-based cohort. Acta neurochirurgica.
2021;163(7):1895–1905.

[57] Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al.
Radiomics: the facts and the challenges of image analysis. European
radiology experimental. 2018;2(1):1–8.

[58] Gupta M, Rajagopalan V, Rao BP. Glioma grade classification using
wavelet transform-local binary pattern based statistical texture features
and geometric measures extracted from MRI. Journal of Experimental &
Theoretical Artificial Intelligence. 2019;31(1):57–76.

[59] Deepa B, Sumithra M, Kumar RM, Suriya M. Weiner filter based hough
transform and wavelet feature extraction with neural network for classi-
fying brain tumor. In: 2021 6th International Conference on Inventive
Computation Technologies (ICICT). IEEE; 2021. p. 637–641.

[60] Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging
technique for evaluating the microstructural environment of the brain.
American journal of roentgenology. 2014;202(1):W26–W33.

[61] Der G, Everitt BS. Statistical analysis of medical data using SAS.
Chapman and Hall/CRC; 2005.

[62] Sanghani P, Ang BT, King NKK, Ren H. Overall survival prediction
in glioblastoma multiforme patients from volumetric, shape and texture
features using machine learning. Surgical oncology. 2018;27(4):709–714.

[63] Yang Z, Hu Z, Ji H, Lafata K, Floyd S, Yin FF, et al. A Neural Ordi-
nary Differential Equation Model for Visualizing Deep Neural Network
Behaviors in Multi-Parametric MRI based Glioma Segmentation. arXiv
preprint arXiv:220300628. 2022;.

[64] Li Y, Kim MM, Wahl DR, Lawrence TS, Parmar H, Cao Y. Survival
Prediction Analysis in Glioblastoma With Diffusion Kurtosis Imaging.
Frontiers in Oncology. 2021;11:690036.

Page 26 of 41AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://www.cancer.net/cancer-types/brain-tumor/statistics
https://www.cancer.net/cancer-types/brain-tumor/statistics


27
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Appendix A Supplementary:

A.1 Supplementary Figures:
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3X3X3 convolution

Context Module
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(a) U-Net Architecture

Figure A1 No-new network architecture and segmentation results from that architecture
(using BraTS-2020 dataset), (a) 3D U-Net for brain tumor segmentation, (b) Input axial-
FLAIR slice, (c) axial-ground truth, and (d) axial-segmentation result.
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Figure A2 PDP of Dominant features.
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Figure A2 PDP of dominant features.
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Figure A2 PDPs of Dominants features: X-axis shows values of respective features, and
Y-axis shows the average rate of change of feature effect on target feature. The vertical bars
on X-axis show data distribution. This captures global trends of desirable features on the
target variable by considering all the samples.

Page 31 of 41 AUTHOR SUBMITTED MANUSCRIPT - MLST-100882.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



32

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A3 SHAP value and its distribution for dominant features
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Figure A3 SHAP value and its distribution for dominant features
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Figure A3 SHAP value and its distribution for the dominant features. The X-axis shows
the feature value of the respective feature, whereas Y-axis shows the SHAP-value of respec-
tive instances. The shaded region shows the distribution of instances. Each dot is an instance
from the training dataset. This can help us to visualize and analyze where the majority of
SHAP feature value lies, how individually the instances impact target features (range of
impact instance wise), and its distribution. This testifies how these values play a role in
defining the important feature. From all the SHAP plots, we can observe the magnitude of
the SHAP value reduces with the order of importance of features (high to low).

Note: SHAP value calculates how much feature value changes the model’s
predicted value from the average.
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Figure A4 Kaplan-Meier survival plot for survival probability.

The KM estimator measures the percentage of patients that have survived
over a certain period after the treatment or surgery. It computes probabili-
ties of the occurrence of events for a duration of time by dividing them into
small intervals and re-estimates the probabilities to get the final estimate. The
survival probability is computed as follows:

St+1 = St × ((Nt+1 −Dt+1)/Nt+1) (A1)

where, N denotes the number of people at risk and D denotes the number of
people who died and t is the time interval. The KM survival curve is shown in
Figure A4. It is a cumulative measure, and the survival remains the same until
another individual encounters the risk. From this plot, we observed that the
survival probability of older patients is low. The survivability reduces almost
linearly after the age of 50 and almost exponentially after the age of 70 and it
is very low beyond the age of 80. This KM analysis on the metadata supports
the PDP analysis, which shows the exponential decay of survivability from the
age near 70.
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A.2 Supplementary Tables:

Table A1: Dominant features obtained through RFE and their
details.

Features with their descriptions

Age : age information given with the dataset.
cent-at-y : centroid of active tumor across the y axis.
pos-ed-wb-x : centroid of enhancing tumor w.r.t brain centroid across x
axis.
original-shape-LeastAxisLength : It calculates smallest axis length of
the ROI.
Wavelet-LLH-firstorder-Maximum : It measures maximum gray in-
tensity within the ROI after applying the Wavelet LLH-band filter.
Wavelet-LLH-Gldm-DependenceVariance : It calculates variance in
the dependence matrix of the image after applying the Wavelet LLH-band
filter.
Wavelet-LLH-Glrlm-LongRunLowGrayLevel-Emphasis: It esti-
mates the length in the terms of successive pixels run lengths with lower
gray-level intensity values, after applying Wavelet transform.
Wavelet-LHL-Glcm-Correlation : It assesses the correlation between
gray-level values and their related voxels in the gray-level co-occurrence
matrix, after applying the Wavelet LHL band filter.
Wavelet-LHH-Gldm-DependenceNonUniformityNormalized : It
assesses the similarity between dependencies in an image, after applying
the Wavelet LHH band filter.
Wavelet-LHH-Gldm-SmallDependenceHighGrayLevelEmphasis:
It assesses the combined distribution of small dependence with higher
gray-level values after applying the Wavelet LHH band filter.
Wavelet-LHH-Glszm-ZoneEntropy : It evaluates the randomization
of zone sizes and gray level values in the distribution after applying the
Wavelet LHH band filter.
Wavelet-HLL-Glcm-Imc1 : It assesses the correlation between the prob-
ability distribution of two pixels after applying the Wavelet HLL band
filter.
Wavelet-HLH-firstorder-Kurtosis: It assesses the peakedness of the
spread of pixel intensities in the given image after applying the Wavelet
HLH band filter.
Wavelet-HLH-Gldm-DependenceEntropy : It assesses randomness in
the dependencies of an image after applying the Wavelet HLH band filter.
Wavelet-HLH-Gldm-SmallDependenceLowGrayLevel-Emphasis:
It assesses the combined distribution of small dependence with higher
gray-level values after applying Wavelet HLH band filter.
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Wavelet-HHH-Glcm-MaximumProbability : It finds the most fre-
quently occurring neighboring pair of intensity values from the grey-level
co-occurrence matrix after applying the Wavelet HHH band filter.
Wavelet-LLL-Glcm-Correlation : It assesses the association between
pairs and their corresponding voxel intensity value after applying the
Wavelet LLL band filter.
LoG-sigma-1-0-mm-3D-Glcm-Correlation : It assesses the associa-
tion between pairs and their respective voxel intensity value after applying
LoG filter with sigma value 1.
Wavelet-LLH-Ngtdm-Strength : It assesses strength in an image after
applying a Wavelet filter using the LLH band.
LoG-sigma-5-0-mm-3D-Glrlm-RunLengthNonUniformity-
Normalized : It assesses the homogeneity in the gray level run lengths in
the image after applying the LoG filter with sigma value 5.
LoG-sigma-3-0-mm-3D-Glrlm-RunVariance : It calculates variance
in the gray-level run-lengths in the image, after applying LoG filter with
sigma value 3.
LoG-sigma-2-0-mm-3D-Glcm-ClusterShade : It calculates unifor-
mity in the gray-level co-occurrence matrix after applying the LoG filter
with sigma value 2.
LoG-sigma-5-0-mm3D-firstorder-TotalEnergy : It assesses the local-
ized change of the image after applying the LoG filter with sigma value
5.
LoG-sigma-3-0-mm-3D-Glcm-MaximumProbability : It assesses the
occurrences of the most prevalent pairing of neighboring intensity values
in the grey-level co-occurrence matrix after applying the LoG filter with
sigma value 5.
LoG-sigma-2-0-mm-3D-firstorder-90Percentile : It assesses 90th
percentile intensity values of an image after applying LoG filter with sigma
value 2.
LoG-sigma-2-0-mm-3D-firstorder-Skewness: It calculates the asym-
metry of the distribution of intensity values that deviates from the mean
intensity value after applying the LoG filter with sigma value 2.
LoG-sigma-1-0-mm-3D-Glcm-MCC : It assesses the complexity of the
texture in the co-occurrence matrix of an image after applying the LoG
filter with sigma value 1.
Wavelet-LLL-Glszm-SmallAreaEmphasis: It assesses the number of
connected voxels with the same gray-level intensity value or the spread of
smaller size zones after applying Wavelet LLL band filter.
Wavelet-HLL-Glcm-MCC : It assesses the complexity of the texture
in the co-occurrence matrix of an image after applying the Wavelet HLL
band filter.
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Table A2: Dominant feature set through PI and their weights.
The threshold value of the weights is 100.

Weight Features

1309.94 Age : age information given with the dataset.

0761.33 LoG-sigma-1-0-mm-3D-glcm-Correlation : It assesses the
association between pairs and its respective voxel intensity value
after applying the LoG filter with sigma value 1.

0722.95 Wavelet-HHH-Gldm-DependenceVariance : It calculates
variance in the dependence matrix of the image after applying
the Wavelet HHH band filter.

0678.10 LoG-sigma-4-0-mm-3D-Glcm-JointEntropy : It calculates
the randomness in neighborhood intensity values.

0669.58 LoG-sigma-2-0-mm-3D-firstorder-Kurtosis: It assesses
the peakiness of the intensity distribution of a given image after
applying the LoG filter with sigma value 2.

0558.74 LoG-sigma-2-0-mm-3D-Glrlm-
HighGrayLevelRunEmphasis: It assesses the spread of the
image’s upper gray-level values in the image.

0555.77 Wavelet-HLH-Gldm-SmallDependence-
LowGrayLevelEmphasis: It assesses the combined spread of
small-dependence with lower gray-level values after applying
Wavelet HLH band filter.

0509.37 LoG-sigma-3-0-mm-3D-Gldm-LowGrayLevelEmphasis:
It calculates the spread of low gray-level values in the image.

0476.60 cent-ncr-x : centroid of necrosis across x-axis.

0464.70 Wavelet-LLL-firstorder-InterquartileRange : It assesses
the difference between the 75th and 25th percentile of the image
array after applying the Wavelet LLL band filter.

0444.84 LoG-sigma-4-0-mm-3D-Glcm-ClusterShade : It calculates
uniformity in the gray level co-occurrence matrix after applying
LoG filter with sigma value 4.

0438.99 Wavelet-LHH-firstorder-RootMeanSquared : It assesses
the root-mean-square of the intensity value of an image after
applying the Wavelet LHH band filter.

0420.35 LoG-sigma-4-0-mm-3D-Glcm-SumAverage : It assesses
the relationship between pair occurrences with lower intensity
values and pair occurrences with higher intensity values, after
applying LoG filter with sigma value 4.

0406.08 Wavelet-HHH-Glrlm-RunLengthNonUniformity : It as-
sesses the homogeneity between different run lengths of the
image.
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0395.63 LoG-sigma-5-0-mm-3D-Glszm-SmallAreaEmphasis: It
assesses the spread of small size-zones or the number of con-
nected voxels that have the same gray-level intensity value,
after applying LoG filter with sigma value 5.

0357.96 Wavelet-LLH-Ngtdm-Coarseness: It assesses the spatial
rate of change in the intensity value after applying the Wavelet
LLH band filter.

0357.51 Wavelet-LLH-firstorder-InterquartileRange : It assesses
the difference between the 75th and 25th percentile of the image
array after applying the Wavelet LLH band filter.

0340.11 cent-at-x : centroid of active tumor across x-axis.

0314.18 LoG-sigma-4-0-mm-3D-Glszm-
LargeAreaLowGrayLevel-Emphasis.

0282.22 Wavelet-HHH-firstorder-Kurtosis: It assesses the peaked-
ness of the spread of the image’s intensity values after applying
the Wavelet HHH band filter.

0247.80 Wavelet-HHH-Glcm-DifferenceAverage : It assesses the re-
lationship between the occurrences of pairings with similar
intensity values and those with different intensity values after
applying the Wavelet filter.

0247.36 cent-wb-x : centroid of whole-tumor brain across x-axis.

0232.56 LoG-sigma-3-0-mm-3D-firstorder-Energy : It assesses the
magnitude of voxel values in an image.

0229.91 LoG-sigma-1-0-mm-3D-firstorder-Variance : It measures
the distribution spread about the mean intensity value after
applying LoG filter with sigma value 1.

0226.71 Wavelet-LHH-firstorder-Kurtosis: It assesses the image’s
peakedness in terms of intensity distribution, applying Wavelet
LHH band filter.

0217.80 LoG-sigma-2-0-mm-3D-Glszm-
LargeAreaHighGrayLevel-Emphasis: It assesses the
combined spread of larger size-zones with higher gray-level
values, after applying the LoG filter with sigma value 1.

0183.47 Wavelet-LLH-firstorder-Range : It assesses the distribution
of gray-level values of an image.

0131.10 Wavelet-LHH-Gldm-DependenceEntropy : It assesses ran-
domness in the dependencies of an image after applying Wavelet
LHH band filter.

0118.90 Wavelet-LHL-Glcm-ClusterShade : It calculates uniformity
in the gray level co-occurrence matrix after applying the Wavelet
LHL band filter.
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Table A3 Feature annotation of a correlation matrix.

Index
No.

Features Name Features Type

1 Age Meta-Data

2 cent-at-x Image-based

3 cent-ncr-x Image-based

4 cent-wb-x Image-based

5 LoG-sigma-1-0-mm-3D-FirstorderVariance Radiomics-based

6 LoG-sigma-1-0-mm-3D-Glcm-Correlation Radiomics-based

7 LoG-sigma-2-0-mm-3D-FirstorderKurtosis Radiomics-based

8 LoG-sigma-2-0-mm-3D-Glrlm-
HighGrayLevelRunEmphasis

Radiomics-based

9 LoG-sigma-2-0-mm-3D-Glszm-
LargeAreaHighGrayLevelEmphasis

Radiomics-based

10 LoG-sigma-3-0-mm-3D-Firstorder-Energy Radiomics-based

11 LoG-sigma-3-0-mm-3D-Gldm-
LowGrayLevelEmphasis

Radiomics-based

12 LoG-sigma-4-0-mm-3D-Glcm-ClusterShade Radiomics-based

13 LoG-sigma-4-0-mm-3D-Glcm-JointEntropy Radiomics-based

14 LoG-sigma-4-0-mm-3D-Glcm-SumAverage Radiomics-based

15 LoG-sigma-4-0-mm-3D-Glszm-
LargeAreaLowGrayLevelEmphasis

Radiomics-based

16 LoG-sigma-5-0-mm-3D-Glszm-
SmallAreaEmphasis

Radiomics-based

17 Wavelet-HHH-Firstorder-Kurtosis Radiomics-based

18 Wavelet-HHH-Glcm-DifferenceAverage Radiomics-based

19 Wavelet-HHH-Gldm-DependenceVariance Radiomics-based

20 Wavelet-HHH-Glrlm-RunLengthNonUniformity Radiomics-based

21 Wavelet-HLH-Gldm-SmallDependence-
LowGrayLevelEmphasis

Radiomics-based

22 Wavelet-LHH-Firstorder-Kurtosis Radiomics-based

23 Wavelet-LHH-Firstorder-RootMeanSquared Radiomics-based

24 Wavelet-LHH-Gldm-DependenceEntropy Radiomics-based

25 Wavelet-LHL-Glcm-ClusterShade Radiomics-based

26 Wavelet-LLH-Firstorder-InterquartileRange Radiomics-based

27 Wavelet-LLH-Firstorder-Range Radiomics-based

28 Wavelet-LLH-Ngtdm-Coarseness Radiomics-based

29 Wavelet-LLL-Firstorder-InterquartileRange Radiomics-based
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Table A4 Example of calculating SHAP value. Let us consider Feature set (F) = {A, B,
D}, and values (contribution) of features are: v{A} = 8, v{B} = 10, v{D} = 9, v{A, B} =
18, v{A, D} = 20, v{B, D} = 22 and v{A, B, D} = 25.

Possible combinations of feature Marginal Combination

Feature A Feature B Feature D

{A, B, D} v{A} -ϕ =8 v{A,B}-v{A} =10 v{A,B,D} -v{A,B} =7

{A, D, B} v{A} -ϕ =8 v{A,B,D} -v{A,D}=5 v{A,D} -v{A}=12

{D, B, A} v{A,B,D} -v{D,B} = 25-22 = 3 v{D,B} -v{B} =12 v{D} -ϕ=9

{B, A, D} v{A,B} -v{B} = 8 v{B} -ϕ =10 v{A,B,D} -v{A,B} =7

{D, A, B} v{A,D} -v{D} = 11 v{A,B,D} -v{A,D} =5 v{D} - ϕ =9

{B, D, A} v{A,B,D} -v{B,D}=3 v{B} - ϕ= 10 v{B,D} -v{B}=12

SHAP value (8 + 8 + 8 + 10 + 11 + 3) | 6 = 6.833 (10 + 5 + 12 + 10 + 5 + 10) | 6 = 8.667 (7 + 12 + 9 + 7 + 9 + 12) | 6 = 9.334
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