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Abstract: 3D UNet has achieved high brain tumor segmentation performance but requires high computation, large
memory, abundant training data, and has limited interpretability. As an alternative, the paper explores using 2D triplanar
(2.5D) processing, which allows images to be examined individually along axial, sagittal, and coronal planes or together.
The individual plane captures spatial relationships, and combined planes capture contextual (depth) information. The
paper proposes and analyzes an ensemble of uniplanar and triplanar UNets combined with channel and spatial attention
for brain tumor segmentation. It investigates the significance of each plane and analyzes the impact of uniplanar and
triplanar ensembles with attention to segmentation. We tested the performance of these variants on the BraTS2020
training and validation datasets. The best dice similarity coefficients for enhancing tumor, whole tumor, and tumor
core over the training set are 0.712, 0.897, and 0.837, while they are 0.699, 0.875, and 0.782, over the validation set,
respectively (obtained through BraTS model evaluation platform). The scores are at par with the leading 2D and 3D
BraTS models. Therefore, the proposed approach with fewer parameters (almost 3× less) demonstrates comparable
performance to that of a 3D model, making it suitable for brain tumor segmentation in resource-limited settings.

Key words: Attention network, gliomas, triplanar ensemble, brain tumor segmentation, UNet

1. Introduction

Qualitative brain tumor segmentation (BTS) is crucial for the prognosis and diagnosis of brain tumor patients.
The total survival tenure of brain tumor (glioma) patients is no longer than two years, [1] because of the high
irregularity in shape, structure, location of the tumor, and intensity inhomogeneity within and between tumor
tissues. However, early diagnosis can be extremely helpful for the oncologist to fortify treatment planning,
which can increase the survival chances of tumor patients. Gliomas have been categorized by the World
Health Organization (WHO) as Type IV (the most lethal and common type) of brain tumor. In recent years,
advancements in deep neural network techniques have played a crucial role in achieving significant milestones
in automated medical image segmentation [2–4].
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Convolution neural network (CNN) is one of the most commonly used deep neural network models,
which can learn complex discriminative features directly from the images. CNN networks have reached human-
comparable performance accomplishing complex real-time tasks, including in the medical imaging domain. For
example, modifications to UNet [5] were proposed for BTS through the inclusion of dense module, variational
autoencoder (VAE), residual module, attention mechanism, convolutional block-attention module (CBAM), and
self-attention transformer [3, 6–9].

The brain tumor segmentation (BraTS) challenge [10, 11] comprises delineating tumor tissues from
healthy tissues. The task is to label each voxel/pixel of the images as either necrosis (NCR/NET), ac-
tive/enhancing tumor (ET), peritumoral edema (ED), or background. Again, these labels are combined to
form active/enhancing-tumor (ET), tumor-core (TC), and whole tumor (WT) regions. Here, TC includes the
ET region, and WT includes TC regions. This challenge assesses the tumor regions by categorizing them into
ET, TC, and WT regions. Since gliomas are the most aggressive tumors, their boundaries are frequently uncer-
tain and challenging to distinguish from normal tissues. Additionally, pixels of tumors are very few compared
to normal tissues, causing a highly imbalanced dataset, making it very challenging to delineate tumor tissues.
Multiple Magnetic Resonance Imaging (MRI) technologies are frequently used to solve this problem, includ-
ing T1-contrasting (T1C), fluid attenuation inversion recovery (FLAIR), diffusion-MRI (dMRI), proton-density
(PD) imaging, T2 (relaxation), and T1 (spin-lattice relaxation). The contrast among these MRI modalities
allows each tissue to have a distinctive signature [12, 13].

1.1. 3D, 2D, and 2.5D segmentation models

Some of the contemporary methodologies are: Isensee et al. [8] proposed an ensemble of 3D UNet models where
the authors put more emphasis on region-based training, extensive data augmentation, increasing batch size and
postprocessing yielding top-ranking segmentation. The Dice Similarity Coefficient (DSC) obtained are 0.798
(ET), 0.912 (WT), and 0.857 (TC). Similarly, Haozhe et al. [7] employed an ensemble of single and cascaded
networks to predict segmentation, where the cascade network focuses on segmenting tumor regions from coarser
to finer. The obtained DSC are 0.787 (ET), 0.913 (WT), and 0.855 (TC). Similarly, Yuan et al. [14] proposed an
ensemble of lightweight attention networks that integrates both low-level and high-level features across various
scales. The DSC obtained are 0.793 (ET), 0.911 (WT), and 0.853 (TC). Ma et al. [15] proposed a five-layered
single 2D UNet, based on residual connection for segmentation. Further, postprocessing is used to improve
segmentation. The DSC obtained are 0.704 (ET), 0.879 (WT), and 0.773 (TC). McKinley et al. [13] proposed
an ensemble of triplanar models trained on multiple planar views. However, the initial layers were built on a
3D convolution to obtain complete information from a 3rd dimension. The model was one of the top-ranking
models of the BraTS2018 challenge. The obtained DSC are 0.77 (ET), 0.91 (WT), and 0.83 (TC). Similarly,
Ali et al. [16] introduced an ensemble of 2D and 3D networks, where the 2D is trained on multi-planar views
and the 3D is a lightweight network built using MultiFiber (MF) and dilated convolutions. The obtained DSC
are 0.748 (ET), 0.871 (WT), and 0.748 (TC).

A 3D model can correlate spatial and depth information of pixels, enhancing the model’s discriminating
capability. Nevertheless, massive computations and memory are required to process spatial and depth infor-
mation of images together [17]. Due to the enormous model parameters and propensity for overfitting, its use
can be severely constrained [18]. In comparison, the 2D-based model requires less training time, computation
cost, and memory consumption and can be easily optimized. But it only has spatial information of tumors,

909



RAJPUT et al./Turk J Elec Eng & Comp Sci

which limits its segmentation performance. Moreover, due to the intriguing slice-based characteristic of MRI
in contemporary medical procedures, some authors emphasized that a 2D approach should be considered [17].
Also, large medical datasets are available in the 2D format, and robust classification models are proposed [17, 19]
based on them. Therefore, we desire a model with a 3D network’s discriminative ability but with lower memory
and computational requirements like that of a 2D model.

MRI volumetric data can be visualized by 2D-triplanar processing. It is a method for producing 2D
images along axial, sagittal, and coronal planes. Here, triplanar processing consists of models trained on axial
(transverse or X-Z), sagittal (lateral or Y-Z plane), or coronal plane (frontal or Y-X). The resulting image
can be examined individually or together to gain insights into anatomy. Due to combining 2D images along
different planes, this visualization provides a pseudo sense of depth and is known as 2.5D processing. The 2.5D
triplanar processing offers reduced computations, better interpretability, easier data acquisition, and reduced
memory demands [17, 20, 21]. As a result, 2.5D approaches have been proposed where UNet was trained on
different planar images and combined to provide depth information like a 3D network. These triplanar or 2.5D
UNet models require less computation and memory than 3D models and use depth information to provide
accurate segmentation [20]. The triplanar models, when hyper-tuned and trained effectively, can perform at
par or closer to a 3D model [13, 16]. These models performed better than all other competing techniques in the
biomedical segmentation domain [13, 22, 23]. Other parallel approaches were proposed called “Efficient net” or
“Light-weight network”, where optimized 3D UNets were utilized for the BTS problem [24–26].

The attention mechanism in the UNet facilitates focusing on a specific part or certain features of the
input and selectively provides them importance. This allows the network to attend only to relevant information,
understand the input better, and improve precision. In this paper, channel attention (CA) focuses on allowing
UNet to select channels and assign importance to them during feature extraction. It employs global pooling
and learnable transformation to correlations on a per-channel basis. In the BTS problem, CA is introduced
in each decoding path within skip connections, where global pooling summarizes spatial information across
each channel, and then it is passed through dense or convolution layers to learn channel-wise weights as per
the contextual information it carries. CA helps to learn “what” information in the feature map the model
has to focus on. In contrast, Spatial attention (SA) lets the model focus on important locations or regions
in the activation map. Combining relevant information from both the channel and spatial dimension, thereby
suppressing nonrelevant information, can improve the representation and discriminating ability of the model
[27, 28]. It uses a convolution layer to generate the attention maps, and rescaling adjusts the importance of
each spatial location based on them. SA allows the network to attend important locations and provides good
segmentation.

In summary, the paper focuses on the following aspects:

• Developing a hybrid ensemble of planar and triplanar models with different combinations of CA and
SA. We show that a hybrid ensemble requires lesser training time, memory, and computation, than the
ensemble of 3D models on the validation set of the BraTS2020 challenge.

• We study and analyze the impact of CA, concurrent spatial and channel attention (CSCA), and sequential
spatial and channel attention (SSCA) on variants of planar and triplanar models. The former allows the
network to capture spatial and channel correlations simultaneously, while the latter derives attention maps
along space and channel and merges them.
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• Analyzing the impact of planar and triplanar model variants on segmentation.

The rest of this paper is arranged in the following manner: Section 2 examines materials and approaches.
The experimental results and discussions are addressed in Section 3. Section 4 presents conclusions and future
research.

2. Materials and approaches

2.1. Dataset sources and assessment metrics

The BraTS-2020 [10, 11, 29] challenge’s training and validation datasets are employed to train and evaluate
the proposed work. This dataset is volumetric and multiparametric in nature. The training set comprises
MRI data of 369 patients, while the validation set encompasses images of 125 patients. Each sample includes
modalities - T1, T1-contrasted (T1C), T2, and FLAIR. Individual modality has a volume measuring 240(W )×
240(H) × 155(C) . All the images are already coregistered to an identical anatomy template, skull-stripping,
and are resampled to a 1mm3 resolution. The annotated labels or regions of interest (ROIs) for each training
patient have the values 0 for background, 1 for nonenhancing tumor and necrosis tumor (NET or NCR), 2

for peritumoral edema (ED), and 4 for enhancing/active tumor (ET). However, groundtruth labels are not
provided for the validation set. We submit the segmentation results to the BraTS organizers’ online evaluation
platform at (https://ipp.cbica.upenn.edu/) for quantitative evaluation of the models on the validation set.

The evaluation metrics of BraTS-2020 consist of the DSC and 95th percentile of Hausdorff-Distance (HD)
in millimeters (mm). The DSC calculates the spatial intersection between the predicted labels and truth labels.
In contrast, HD is the largest distance between a point in one set (ground-truth segmentation G) and the
nearest point in the other set (predicted segmentation P). In other words, it calculates how well the predicted
segmentation boundary is aligned with the ground-truth boundary. Mathematically, DSC and HD are defined
as:

DSC = 2TP
FP + 2TP + FN (1)

HD = max
{

S
gϵG

I
pϵP

d (g, p) , S
pϵP

I
gϵG

d (g, p)
}

(2)

where FN , FP , TP , S , and I represent false negative, false-positive, true positive predictions supre-
mum, and infimum, respectively, and d(g, p) is the distance between points g ϵG and points p ϵ P . Larger DSC
values indicate better segmentation, while a smaller value suggests poor segmentation. For HD, smaller values
suggest good alignments of ground truth and predicted segmentation, and larger values signify poor alignment.
However, for ranking the competing models, the BraTS challenge mainly considers DSC, whereas HD is used to
identify potential instances of over-segmentation or under-segmentation within the tumor subregions through
the methods contributed by participants.

2.2. Preprocessing and augmentation

Using the N4 algorithm [30], which corrects the inhomogeneity present in MRI images, all training images
are bias-field corrected. Further, nonbrain pixels are removed from the modalities while retrieving 2D images
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Figure 1. The architecture of the proposed 2D UNet.

because some of the slices do not have brain information, which also helped to overcome the class imbalance.
Later, the top and bottom 1% intensities are removed, considering them outliers. Finally, z-score normalization
is performed on each slice of the images. The size of the images is 192× 152, 152× 144 , and 192× 144 for axial,
coronal, and sagittal planes, respectively. During training, we employ random horizontal and vertical flipping
of the images to augment the dataset and alleviate the overfitting problem.

2.3. Proposed ensemble for planar and triplanar UNets with attention

The network structure of the suggested 2D UNet can be viewed in Figure 1. The network has 4 layered encoder-
decoder paths; each layer consists of a ResNet [31] like convolution block. The 2D image slices that have
been randomly chosen serve as the inputs for the encoder path of every planar model. The dimensions of the
input image slices for each individual planar model are specified in the preceding paragraph. In each layer of
the encoding path, strided convolution is utilized to halve spatial resolution while simultaneously doubling the
count of channels. The initial count of channels is 64; whereas similar to the approach in Noori et al. [32], each
ResNet block consists of two convolution blocks with a kernel size of 3× 3 , along with batch normalization and
a Parametric ReLU (PRelu) unit [33]. On the decoder side, each layer decreases the feature maps’ numbers by
half and doubles their size, using an upsampling layer and a 2×2 convolution layer. Further, each layer feature
map on the decoder side is concatenated to the respective encoder layer feature maps. Finally, it is passed to
the attention block [34], which recalibrates each channel feature map and forwards it to the subsequent layers.
The network uses softmax activation to output 4 channels, each for the NCR/NET, ET, ED, and background.
Further, these channels are combined to dissect the tumors into ET, TC, and WT regions. This base network
(shown in Figure 1) is trained with input images from the axial plane (AP). We created three models for the
AP based on CA, CCSA, and SCSA. The attention modules are implemented on the decoder side (with circular
star symbols in Figure 1). Similarly, three models are created for the coronal plane (CP) and three for the
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sagittal plane (SP). Thus, nine models (three planes × three attention per plane) are trained with the same
hyperparameters and network structure.

Different ensembles are created using a suitable combination of the outputs from these nine networks, and
they are shown in Table 1. The planar ensemble combines outputs for the same plane but with three different
attention mechanisms. The outputs of three models from the AP are combined to create an Axial - Ensemble.
Similarly, outputs from three CP and three SP models are combined to produce a Coronal - Ensemble and a
Sagittal - Ensemble, respectively. The axial planar ensemble is shown in Figure 2a. In the triplanar ensemble ,
we combine outputs from three planes - AP, CP, and SP; each with the same attention mechanism. For example,
the model’s outputs for AP, SP, and CP with channel attention are combined. Similar ensembles are created
using three orthogonal planes with CCSA and SCSA, respectively. The triplanar ensemble is shown in Figure
2b. We also created a Super-ensemble by combining planar and triplanar ensembles. It is shown in Figure 3.

2.4. Attention mechanism

The attention mechanism is [34] was employed to boost the accuracy of the encoder-decoder network. It
explores the interdependencies between the channels or spatial locations. The primary purpose of this attention
mechanism is to enable the network to use the most pertinent portions of the input feature sequence in an
adaptable way, depending on the context it carries. Those input features can be within the feature map
(spatial attention) and across the feature map (called channel attention), which can further focus on enhancing
performance. The most pertinent input feature vectors receive the highest weights; less informative vectors
receive lower weights [34]. All the attention techniques used in this work are simple in structure and marginally
impact the model complexity [28, 34].

2.4.1. Channel attention (CA)

Each channel is weighted equally in standard convolution when producing the output feature maps. It produces
feature-maps that jointly encode the spatial and channel information by learning filters that capture local spatial
patterns along all input channels. The channel attention mechanism weights each channel separately, allowing
it to recalibrate semantic attributes per salient features it carries [35, 36]. While significant efforts are invested
in refining the combined representation of spatial and channel feature information, there remains a substantial
gap in the exploration of encoding spatial-wise and channel-wise information separately.

The contemporary study has made an effort to resolve this problem by formally demonstrating the
interdependencies between the feature map channels. Recently, an architecture framework called squeeze and
excitation (SE) network [36] was proposed, which has a simple structure and is easy to integrate into the
existing network. Therefore, we have also used SE techniques to implement channel attention. SE works on
two principles: First, it utilizes global average pooling (GAP) to squeeze the feature maps into a single numeric
value (number of channels) to gain global statistics of the channels. Second, the excitation operator captures
nonlinear and nonmutual exclusive relations between the channels and a gating mechanism that utilizes a
sigmoid activation to assign weights to each channel based on the information it holds. In summary, it squeezes
across the spatial dimensions and reweights across the channel dimensions to improve feature representations
by exploring interdependencies between feature channels. Mathematically, a squeeze operation on the feature
map U can be defined as:
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Figure 2. The idea of planar and triplanar networks. (a) The axial planar network, where segmented outcomes
from CA, CCSA, and SCSA networks trained on axial images, are combined to generate an outcome. Similarly,
we can create a Coronal - Ensemble and a Sagittal - Ensemble. (b) An overview of the triplanar network, where
segmented outcomes generated from individual attention networks (e.g., CA network) trained on axial, coronal,
and sagittal images are combined to generate an outcome. Similar segmented outcomes are generated from
CCSA and SCSA attention networks trained on three orthogonal planes.

z = Fsq(U) =
∑C

c=1

[
1

H×W

∑H
i=1

∑W
j=1 uc(i, j)

]
= GAP (3)
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Figure 3. The architecture of super-ensemble, where planar and triplanar networks’ outcomes were combined
to generate BTS.

where, (U) = {u1, u2, ...uc} is a feature map which consists of multiple filters {1, 2, ...cth} . The excitation can
be defined as:

Fex = F (z,W ) = σ

 2st FC layer︷ ︸︸ ︷
W2(δ(W1(z))︸ ︷︷ ︸

1stFC layer

)

 (4)

where σ is a sigmoid function and W1 and W2 are the weights of 1st and 2st FC layers, respectively, and z is
the feature map after the squeeze operation. The CA module is illustrated in Figure 4a.

2.4.2. Concurrent channel and spatial attention

Similarly, taking clues from the study mentioned in [27] suggests that calibrating the feature maps paral-
lelly along spatial and channel, then combining the results can enhance the spatial and channel information.
Therefore we experimented with infusing concurrent channel and spatial squeeze-and-excitation blocks into the
segmentation network. The CCSA module is illustrated in Figure 4b.

2.4.3. Sequential channel and spatial attention

This module sequentially creates attention maps spanning the channel and spatial dimensions from an interme-
diary feature map. It subsequently aggregates these attention maps with the input feature map, allowing for an
adaptable recalibration of features [28]. It incrementally derives a 1D channel attention map (Ac ), such that
Ac ϵ {C × 1 × 1} and a 2D spatial attention map (As ), such that As ϵ {1 ×H ×W }. For the channel and
spatial module, channel and spatial information aggregation is done using max-pool and average-pool operations
that capture effective features across the channel and spatial dimensions. Mathematically, the whole attention

915



RAJPUT et al./Turk J Elec Eng & Comp Sci

(a)

(b)

20

+

Conv. layer

σ

σ

Max pooling

Average pooling

Max pooling, Average 

pooling

Shared MLP

Add Sigmoid

Sigmoid

Channel Attention module

Spatial Attention module

Input feature
Mc

Ms

(c)
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procedure can be described as follows:
F ′ = Ac(F )⊕ F (5)

F ′′ = As(F
′)⊕ F ′ (6)

where, ⊕ indicates elementwise multiplication, F is a feature map, Ac(F ) is the channel attention map, As(F
′)

is the spatial attention map and F ′′ is the final output.
Whereas Ac(F ) and As(F

′) can be defined as:

Ac(F ) = σ [mlp {AP (F )}+mlp {MP (F )} ] (7)

As(F
′) = σ

[
f7×7
c {mlp {AP (F ′)} ·mlp {MP (F ′)} }

]
(8)

where σ denotes the sigmoid function, mlp is multi-layered perceptron, AP , MP are the average and
maxpooling operations on the feature map respectively, · is the concatenation operation, and f7×7

c indicates a
convolution operation with a 7× 7 kernel size. The SCSA module is illustrated in Figure 4c.

2.5. Network training and optimization

The individual network extracts 2D input images randomly and applies image augmentation on the fly to
train the models. The input sizes for the axial, coronal, and sagittal models are 192 × 152 , 152 × 144 , and
192 × 144 , respectively. The batch size is 15, and models are trained on five cross-validation sets. Based on
the outcomes from our literature review (demonstrated in Table 2), we employed a hybrid loss function that
integrates the Generalized Dice-Loss (GDL) [37] with categorical cross-entropy to alleviate class imbalance, as
shown in Equation 9. GDL recalibrates the DSC to consider the significance of each class and balances their
impact based on their prevalence. It helps the loss function to prioritize underrepresented classes, leading to
an enhanced capability of the model to segment these specific classes accurately. Further, the initial training
learning rate is 8 × 10−3 , which reduces by a factor of 0.5 when the validation-loss does not decrease for 30
epochs. Further, the model’s training stops if the validation-loss does not reduce for 50 epochs. The models
were trained using a stochastic gradient-descent optimizer. The training hyperparameters are the same for all
the models. The deep learning framework is developed using Keras and Tensorflow2.2. The models are trained
on Quadro RTX 5000 system having a 16GB GPU and 128GB RAM.

Loss = GDloss(G,P ) + CEloss(G,P )

GDloss(G,P ) = 1− 2

∑C
l=1(Wl ×

∑N
i=1 gli × pli)∑C

l=1(Wl ×
∑N

i=1 gli × pli)

CEloss(G,P ) = − 1

N

N∑
i=1

C∑
l=1

(gli × log pli)

(9)

where G indicates groundtruth label, P is the predicted label, Wl = 1
(
∑N

i=1 gli)2
is the adaptive weight for the

lth channel, pli is the predicted label l for voxel i , gli is the ground truth label l for voxel i , g ϵG and p ϵ P .
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3. Experimental results and discussions

As discussed in Section 2.3, we trained nine models (three distinct attention-based architectures along three
different anatomical planes in 2D slices) in this work. In addition to submitting and analyzing results for
each variant separately, we create ensembles by adding their output probabilities and averaging across them to
obtain final segmentation results for training and validation BraTS2020 datasets. Table 1 shows a quantitative
performance evaluation of each variant on training and validation datasets. We observe from all the proposed
variants, ensemble models give the best segmentation results. Among the 16 variants, Table 1 highlights
the five best-performing models on both the validation and training datasets. Their graphical performance
representation on the BraTS2020 validation dataset is shown in Figure 5. Considering the performance of
Super-Ensemble among all variants shown in Table 1, we use it for comparison with leading BraTS2020 methods
in subsequent analysis.
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Figure 5. The performance representation of our top five models on the BraTS2020 validation dataset. On
Y-axis, DSC is shown, whereas on the X-axis are the model names, and vertical bars represent ET, WT, and
TC tumor regions.

3.1. Planar analysis along with parameter counts

Comparing the planar models, we observe that each excels in segmenting different regions. Training models
using different planar views allow models to capture distinct properties of lesions. For instance, among AP
model types, the CA model is able to dissect WT (DSC: 0.873) and TC (DSC: 0.754) regions well, whereas the
SCSA model dissects all the regions well, such as, for ET (DSC: 0.670), WT (DSC: 0.866), TC (DSC:0.760).
Similarly, among CP model types, we observe that all the models (CA, CCSA, and SCSA) have moderate DSCs
for all the lesions. However, across all model types, the DSC for ET is better than AP model types. Whereas,
among SP model types, the CA model has dissected ET (DSC: 0.663) and WT (DSC: 0.850) regions well,
the CCSA has dissected TC (DSC: 0.759) well, and SCSA has dissected all the lesions well (DSC: 0.680(ET),
0.853(WT), 0.756(TC)). The parameter counts for all the model types, on average, is 10.27M .

Further, a comparison is also conducted among planar ensembles. We observed that both the Axial
ensemble and the Sagittal ensemble are able to dissect all the lesions well. Where the DSC for Axial ensemble
are 0.661, 0.879, and 0.767 for ET, WT, and TC, respectively, and for Sagittal ensemble, they are 0.682, 0.863,
and 0.762 for ET, WT, and TC, respectively. Furthermore, Coronal ensemble models trained on coronal view
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images have lower performance than the other two planar images. The reason can be that some modalities are
acquired in 2D axial or sagittal view, and each slice has a specific thickness. So while reconstructing it to coronal
views, the reconstruction requires an interpolation technique to fill that thickness area. It causes anisotropy in
resolution [38], meaning discrepancy in resolution along different planes, which occurs due to differences in the
voxel size and acquisition parameters. It can be explicitly seen in Figure 6, where 6(a) is the axial view of the
Flair image and the resolution is intact compared to coronal and sagittal slice views shown in 6(b) and 6(c).
The coronal slice has the least detailed structure. In their work on BTS, McHugh et al. [17] also highlighted the
issue of data loss caused by the coronal plane view. On average, the parameter counts of our planar ensemble
models are 30.8M .

Table 1. Quantitative evaluation of each variant of models on the training and validation datasets of BraTS2020
challenge. Bold text signifies the best five performing models on validation and training sets. Results from
models are indicated using the same color for training and validation sets. The first two rows show the top-
ranking model of the challenge. Validation results are obtained from the challenge’s online assessment platform
https://ipp.cbica.upenn.edu/.

Mean Dice similarity coefficient (DSC) Mean Haudorff Distance (HD)
Dataset Model Type Model Name Parameter

Numbers in
millions (M)

ET WT TC ET WT TC

Validation 3D Ensemble of 5
models

Isensee et al. [8] 30.2 × 5 =
151 M

0.798 0.912 0.857 26.410 3.730 5.640

Validation 3D Ensemble of 11
models

Yuan et al. [14] 16.5 × 11 =
181.5 M

0.793 0.911 0.853 18.196 4.097 5.888

Validation Axial CA 10.246 M 0.610 0.873 0.754 56.627 9.532 14.038

Validation Axial CCSA 10.247 M 0.618 0.854 0.738 52.666 13.759 17.896

Validation Axial SCSA 10.333 M 0.670 0.866 0.760 46.227 9.328 15.22

Validation Coronal CA 10.246 M 0.633 0.836 0.747 54.469 19.712 22.547

Validation Coronal CCSA 10.247 M 0.629 0.827 0.743 58.344 23.447 22.538

Validation Coronal SCSA 10.333 M 0.642 0.825 0.738 52.114 25.978 19.806

Validation Sagittal CA 10.246 M 0.663 0.850 0.737 48.509 10.414 15.969

Validation Sagittal CCSA 10.247 M 0.652 0.835 0.759 49.567 14.381 15.010

Validation Sagittal SCSA 10.333 M 0.680 0.853 0.756 46.402 17.448 18.758

Validation Axial Ensemble CA-CCSA-SCSA 30.825 M 0.661 0.879 0.767 41.232 6.754 12.034

Validation Coronal Ensemble CA-CCSA-SCSA 30.825 M 0.648 0.849 0.762 53.748 16.502 15.713

Validation Sagittal Ensemble CA-CCSA-SCSA 30.825 M 0.682 0.863 0.762 43.714 11.391 16.799

Validation Triplanar Ensem-
ble

CA 30.737 M 0.669 0.871 0.771 44.512 6.929 12.558

Validation Triplanar Ensem-
ble

CCSA 30.739 M 0.667 0.860 0.773 45.395 9.764 13.708

Validation Triplanar Ensem-
ble

SCSA 30.999 M 0.693 0.868 0.776 42.274 10.120 13.989

Validation Super-Ensemble CA-CCSA-SCSA 92.47 M 0.699 0.875 0.782 36.752 8.037 14.846

Training Axial Ensemble CA-CCSA-SCSA 30.825 M 0.688 0.897 0.837 41.136 7.056 7.699

Training Sagittal Ensemble CA-CCSA-SCSA 30.825 M 0.715 0.883 0.812 40.200 6.415 8.338

Training Triplanar Ensem-
ble

CA 30.737 M 0.692 0.893 0.827 41.489 7.130 8.523

Training Triplanar Ensem-
ble

SCSA 30.999 M 0.727 0.885 0.826 39.745 9.099 9.734

Training Super-Ensemble CA-CCSA-SCSA 92.47 M 0.712 0.897 0.837 40.310 6.378 7.114
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3.2. Triplanar analysis along with parameter counts

Triplanar is an ensemble of multi-view (axial, coronal, and sagittal) model types. The triplanar ensemble of
all the models has been able to dissect all the regions well. Triplanar Ensemble with CA has DSC 0.669 (ET),
0.871 (WT), and 0.771 (TC), respectively, whereas, with CCSA and SCSA, it is 0.667 (ET), 0.860 (WT), 0.773
(TC) and 0.693 (ET) 0.868 (WT), 0.776 (TC) respectively. Likewise, comparing among triplanar models, both
CA and SCSA exhibit superior performance compared to the CCSA model. On average, the parameter counts
for all the triplanar ensemble models are 30.8M.

Figure 6. Visual comparisons of a sample from the training set: (a), (b), and (c) are the axial, coronal, and
sagittal views of the input FLAIR image whereas (d), (e), and (f) are the ground-truth segmentation for all the
anatomical views. Similarly, (g), (h), and (i) are the predicted segmentation for all the anatomical views. Here,
the ET region is shown in white color, TC in brown, and WT in orange. Comparing (a), (b), and (c), axial
slices contained the most detailed structural information, whereas coronal had the least detailed (high-contrast
and high-resolution) structure.

3.3. Planar-triplanar analysis

Further comparing the ensemble models, i.e.planar models with triplanar models, we can observe that the latter
(2.5D) have performed better than planar models, which are based on 2D processing. Using information from
different planes to segment tumors has been fruitful for triplanar models. The model is able to integrate some
3D information while predicting segmentation labels. Triplanar models with CA and SCSA attention modules
have performed better than other ensemble models. Triplanar with CA excels in segmenting WT (DSC: 0.871)
and TC (DSC: 0.771), whereas with SCSA modules, it excels in segmenting ET (DSC: 0.693) and TC (DSC:
0.776). This shows triplanar ensemble models equipped with specific attention mechanisms have learned distinct
features, significantly enhancing the model’s ability to discriminate between multiple lesions.

Additionally, we observe more favorable outcomes in the ensemble than those produced by each individual
model. The ensemble techniques reduce the variance from the individual models. This average ensemble
technique is more straightforward and faster to estimate the mean over the probability distribution, hence it
is widely used for segmentation [39]. The best-performing is the Super-Ensemble model, which is the ensemble
of all 3 planar and triplanar ensemble models. It has DSC of 0.699 (ET), 0.875 (WT), and 0.782 (TC) with
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92.47M trainable parameters. It has the least HD for all the lesions, in comparison to all the variants, which
signifies that the segmented boundaries are closely aligned with the ground truth boundaries.

3.4. Attention mechanisms analysis

Similarly, observing attention modules - CA, CCSA, and SCSA, we experimentally verify that sequentially
refining channel and spatial features helps the model learn distinct features from multiple lesions or regions-
of-interests (ROIs), resulting in better segmentation results. Another reason is the combination of max and
average pooling helped aggregate finer features useful for learning finer discriminating features of target lesions
[28]. Comparing the performance of all three networks, CCSA has the least DSC, and SCSA has the most. Woo
et al. also mention that a sequential combination of these attention modules gave satisfactory results compared
to a parallel combination [28]. Also, all these attention modules are light in weight, adding only 86016 (CA),
86912 (CCSA), and 173334 (SCSA) parameters to the ordinary model (without the attention module having
10.16M trainable parameters).

3.5. Parameters analysis and comparisons with BraTS2020 leading models

Further, comparing the number of parameters of the proposed models with the top-ranking BraTS2020 models
in Table 1, which is an ensemble of five 3D-UNet [8], and eleven 3D-UNet [14] models. We note that each UNet
in [8] and [14] have 30.2M and 16.5M parameters, respectively, which require enormous computation resources
at a time. In contrast, each UNet in a proposed ensemble (e.g., Triplanar ensemble) requires ≈ 10.2M trainable
parameters at a time. This is because the proposed models are trained individually (one model at a time), and
predictions are ensembled to get final segmentation results. Thus we reduce almost 3× , 1.6× computation and
memory requirement in comparison to that of the top-ranking models, keeping the results comparable for WT
and TC regions. The proposed method has achieved comparable segmentation results for WT (DSC: 0.875)
and TC (DSC: 0.782) with less trainable parameters (10.33M ), thus requiring limited computation resources.
Likewise, the ensemble of UNets [8] and [14] are 1.68× and 2× more than the proposed Super-ensemble method.

Further, we have compared the proposed Super-Ensemble method with various leading BraTS2020 models
shown in Table 2. Rows 2 - 5 show top-ranking models of the BraTS2020 challenge. A comparison of parameters
between the proposed method and two top-ranking models is presented in Table 1, which we elaborated upon
in the preceding paragraph. Additionally, by comparing our model with other leading BraTS2020 models
(shaded in Table 2), we can clearly notice that the proposed Super-Ensemble (planar and triplanar together)
has outperformed models in segmenting regions shown as shaded in Table 2. Comparing these results, we
conclude that an optimized 2D model(s) can compete or perform nearly equally to the 3D model(s).

For qualitative performance evaluation on the training set, random 1
3 samples from the training set are

selected, and segmentation results are obtained from the Super ensemble model. We evaluate segmentation
results by submitting them to the BraTS challenge assessment platform. The DSC for the Super-Ensemble over
the BraTS2020 training set is 0.712, 0.897, and 0.837 for ET, WT, and TC, respectively, as can be seen in
Table 1. Also, the training results of the other four best models can be found in Table 1. At the same time,
visual comparisons of the proposed model can be observed in Figure 6, which compares an input FLAIR image,
ground truth, and segmented map across all the planar views. This justifies the effectiveness of our proposed
ensemble model.
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3.6. Ablation study

We carried out an ablation to study the impact of convolution layer kernel size k at the convolution block in
yellow color and upsample block in green color in Figure 1. We experiment with 3 × 3 and 2 × 2 kernel size
(k) at the preliminary level. A 2 × 2 kernel size increases the performance metrics and comparatively reduces
the number of parameters. For a CP network with a CA attention module with k = 3 , the DSC is 0.647 (ET),
0.823 (WT), and 0.734 (TC). Whereas for CSCA and SSCA, it is 0.614 (ET), 0.798 (WT), 0.710 (TC) and,
0.548 (ET), 0.748 (WT), 0.622 (TC). These results can be compared with kernel size k = 2 as shown in 6− 8th

rows of Table 1, showing a significant increase in scores with k = 2 .

Table 2. Comparison between the proposed Super-Ensemble method and leading methods of BraTS2020
challenge on validation dataset. All the methods were trained on the BraTS2020 training set. The details of
the proposed Super-Ensemble method are shown in the first row. Rows 2nd -5th show top-ranking models of the
BraTS2020 challenge. The proposed Super-Ensemble method outperforms the other lead models in accurately
segmenting lesions depicted by cells shaded in gray color.

Mean Dice similarity coefficient (DSC) Mean Haudorff Distance (HD)
Model name UNet Model Type Loss Type ET WT TC ET WT TC
Proposed method 2D Super-

Ensemble
Generalized Dice-loss +
Cross Entropy

0.699 0.875 0.782 36.752 8.037 14.846

Isensee et al. [8] 3D Ensemble Dice-loss + Cross en-
tropy

0.798 0.911 0.857 26.410 3.730 5.640

Haozhe et al. [7] 3D Ensemble Generalized Dice-loss +
Binary Cross Entropy

0.787 0.913 0.855 26.575 4.184 4.972

Yuan et al. [14] 3D Ensemble Jaccard distance loss +
focal loss

0.793 0.911 0.853 18.196 4.097 5.888

Liu et al. [40] 3D Dice-loss + Cross En-
tropy

0.764 0.882 0.801 21.390 6.490 6.680

Messaoudi et al. [19] 3D Dice-loss + Cross En-
tropy

0.654 0.841 0.680 NA NA NA

Asenjo et al. [41] 2D, 3D Ensemble Cross Entropy + Dice-
loss + HD loss

0.886 0.782 0.736 30.468 4.696 18.185

Ballestar et al. [42] 3D Generalized Dice Loss 0.720 0.840 0.790 37.970 10.930 12.240

Soltaninejad et al. [43] 3D NA 0.660 0.870 0.800 47.330 6.910 7.800

Ma et al. [15] 2D Dice loss + Binary
Cross Entropy

0.704 0.879 0.773 NA NA NA

Ali et al. [16] 2D, 3D Ensemble NA 0.748 0.871 0.748 3.929 9.428 10.090

Agravat et al. [44] 3D Dice loss + Focal loss 0.763 0.873 0.753 27.704 7.038 10.873

Xu et al. [45] 2D Generalized Dice Loss +
Cross Entropy

0.673 0.861 0.704 40.608 7.942 15.750

Bommineni et al. [46] 3D Cross Entropy 0.718 0.884 0.788 30.767 4.834 9.258

Colman et al. [47] 2D Cross Entropy 0.676 0.886 0.672 47.620 12.110 15.740

Similarly, in the CA network, we experiment with the reduction ratio of 16 and 8 in the dense layer. The
segmentation results are better with a reduction ratio of (r = 8) . Therefore we also keep r = 8 in all the
channel attention modules used in CCSA and SCSA networks. Further, in the SCSA block, for implementing
spatial attention, we replaced k = 7×7 kernel size as shown in Equation 8, with k = 3×3 to balance parameter
numbers, but the model’s performance deteriorates. For an axial planar model with k = 3×3 in SCSA attention
block, the DSC is 0.670 (ET), 0.866 (WT), and 0.760 (TC). These results can be compared with kernel size
k = 7 shown in Table 1 (5th rows), showing a significant increase in scores with k = 7 .
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3.7. Limitation of the proposed work

First, the proposed triplanar model does not fully utilize depth dimension. Subsequently, the model struggles
to effectively eliminate minor, isolated false positive labels. Furthermore, the current model’s parameters pose
a challenge for real-time implementation on edge devices. The size of the weight file for the proposed models
is large, and it will not fit into the memory of edge devices. Lastly, the presence of anisotropy within image
resolution is also a notable consideration, and the method’s performance will degrade due to the artificial
transformation of image planes, e.g., from axial to coronal.

4. Conclusions and future research
In this work, we explored a 2D triplanar-ensemble network that has segmenting performance of a 3D model. Also,
this approach is influenced by the fact that most large publicly available medical datasets consist of 2D images.
Therefore, we studied 2D networks and optimized them (2.5D) to improve their performance metrics. The
proposed network uses three 2D UNet networks to generate axial, coronal, and sagittal slice predictions. These
predictions are subsequently integrated into a final multiple-view prediction, which enables partial capturing of
spatial information in the depth dimension. Additionally, infusing attention mechanisms into the network causes
the inclusion of relevant information from channel and spatial dimensions, thereby suppressing unnecessary
information which in turn improves the discriminating power of the segmentation model.

We can observe from this study that an ensemble of the triplanar network based on UNet provides robust
BTS and requires fewer parameters, and thus requires less computational memory. Additionally, we observed
that training models across multiple planes enable them to learn and discriminate between different ROIs.
Models trained using axial and sagittal planar views can segment ROIs more robustly than those trained
on coronal planar view. Combining ensembles of these models further enhances the overall segmentation
performance. Likewise, we observe that incorporating channel and spatial attention into the network in a
sequential manner enables the model to learn significant features from channel and spatial dimensions effectively.
Moreover, incorporating channel attention alone into the network also increases the model’s discriminating
capabilities. In other words, SCSA and CA attention-based models have shown better segmenting performance
than CCSA.

In summary, optimizing 2D models using the attention-based triplanar approach can compete with
3D models with limited complexity and computation requirements. These can be extremely useful when
implemented in resource-constrained environments or integrated with legacy systems where datasets are in
2D images. The proposed 2D network has shown comparable results to the top-performing BraTS2020 models.
However, the performance and parameter numbers can be further optimized.

Future research can focus on many factors: 1. Investigating postprocessing techniques aimed at reducing
false positive regions. Refining network architecture and optimizing hyperparameters (such as exploring variants
of both 2D and/or 3D models and methods based on Graphical neural network (GNN) may offer opportunities to
optimize resource consumption, improve performance, and extend the scope of clinical applicability. This is par-
ticularly pertinent given the abundance of extensive publicly accessible datasets. 2. Incorporating Multimodal
Medical Image Fusion (MMIF) techniques, which combine multiple medical modalities into a single image. This
fusion can help to combine necessary and valuable information captured by multi-modalities into one, which can
improve the model’s discriminatory ability. and yet, these methods demand more training time and specialized
GPUs, resulting in higher computational expenses than other techniques. 3. Incorporating functional-imaging
techniques (e.g., positron emission tomography (PET) image, functional Magnetic-Resonance Imaging (fMRI)

923



RAJPUT et al./Turk J Elec Eng & Comp Sci

image into conventional MRI can help Deep learning (DL) models learn the physiological, metabolic, and bi-
ological details of tumor lesions. 4. Integrating explainable AI techniques can assist in understanding and
subsequently fine-tuning segmentation decisions, thereby strengthening the models’ segmentation capabilities.
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