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Abstract—Recent advances in deep learning-based generative
models have increased the proliferation of fake media, which has
caused severe unrest globally. These generative models can create
ultra-realistic images and videos, almost impossible to differen-
tiate from traditional image and video processing techniques.
As a result, there has been a considerable demand for effective
fake multimedia detection methods. This paper provides an in-
depth review of different approaches to deepfake to understand
and exploit counterfeit media content. The available learning
techniques for creating and detecting forensic setups have been
investigated in this paper as the authenticity and integrity of
multimedia content play a significant role in decision-making or
providing verdicts. Ultimately, we point out various futuristic
technologies that can rejuvenate research to design a full-proof
deepfake ecosystem.

Index Terms—Computer vision, deep learning, detection, fake
news, generative AI

I. INTRODUCTION

Deepfake creation has evolved dramatically in recent years,
and it might be used as fake news to spread disinformation
worldwide, which can raise future danger. There are AI-
generated images, videos, and audio that have been synthe-
sized. More so, using recordings as evidence is becoming the
standard in all litigation and criminal justice processes. One
early example of content manipulation occurred in 1860 on a
portrait of a Southern politician named John Calhoun. His head
was replaced with the president of the US, Abraham Lincoln
[1]. The manipulation was accomplished by adding (splicing),
removing (in-painting), and replicating (copy-move) the ob-
jects within or between two images. Suitable post-processing
steps such as scaling, rotation, and color correction are ap-
plied to improve the visual appearance, scale, and perspective
consistency.

In 2017, the first deepfake video was discovered [2], placing
a celebrity’s face on porn actors. It threatens global security
when fake methods can be used to create movies of interna-
tional leaders with falsified speeches for fraudulent objectives.
In 2018, another example of counterfeit content emerged with
its political misuse. A political party in Belgium made a
fake video of Donald Trump speaking and urging Belgium to
withdraw from the Paris Climate Agreement [1]. It was not the
first time a phony video had been used to produce misleading

movies. Tech-savvy political experts predict that there will
soon be a new wave of fake news that is convincingly realistic.

Spreading manipulated data is easy, but rectifying the data
and combating fake is becoming increasingly challenging. To
fight them, we need to understand what they are, how it
is created, why, and the possible technologies available to
combat them. Fake content has gained momentum on the web
with the advancement of accessible deep generative networks.
Although articles on the topic are extensive, a conclusive
literature survey is relatively sparse. Hence, this study points
to the benefits and dangers of deepfake technologies and a few
illustrations of current creation and detection techniques. We
analyzed several research articles from scholarly repositories,
like the Web of Science and Scopus. The study contributes
to the nascent literature by imparting a comprehensive review
that emerges into an academic debate to fight deepfakes.

The organization of the article is as follows. Starting with
the introduction, the study also explains the benefits of such
technology, followed by the impact of deep synthesized me-
dia. The study then puts forward three sections that review
recent developments in generative networks, methods of media
forgery, and media forgery detection techniques, followed by a
summary of the covered methods and observations. After that,
two sections provide a list of available datasets. Finally, the
study concludes with implications, limitations, and suggestions
for future research.

A. The Benefits of Deepfake Technology

Many sectors, such as gaming and entertainment, educa-
tional media, movies, social media and healthcare, material
science, criminal forensics, and many business fields, like e-
commerce and fashion, can benefit from such technology.

It can be applied in various ways in the film industry.
It can assist in creating digital voices aiding the performers
with lost voices due to disease, or updating movie footage as
a substitute rather than re-shooting it. Moreover, filmmakers
may aim to reproduce classic films by featuring long-dead
actors, applying artistic expressions with complex face editing
and special effects, and upgrading to a professional quality
[3]. Such technology can also be used for automatic voice
dubbing movies in any language. It can make realistic films



and instructional media with more comprehensive access to a
large audience group [3].

In online games and virtual chat environments, deepfakes
technology can be employed for improved telepresence, in-
cluding realistic-looking and sounding assistants. It can aid in
developing better online human interactions and relationships
and assist in digital doubles of individuals [4].

Deepfake is also progressing to aid in the social and
medical spheres. It can help people to cope with the demise
of a loved one by digitally bringing the deceased companion
”back to life” and can bid their final goodbyes. Moreover,
using deepfake technology, a person with Alzheimer’s may
be assisted to connect with a younger visage. The Generative
Adversarial Networks(GANs) technology is also being investi-
gated to identify irregularities in X-rays and their potential for
producing virtual chemical compounds to speed up materials
research and medical discoveries [5].

It can potentially impact in e-commerce and advertising.
Business brands can hire ordinary people to model fashion
items with models of diverse heights, weights, and skin tones.
Deepfakes can be employed to personalize the content and can
transform customers into models. The technology can allow
virtual fittings of items to see how an item will appear before
purchasing it, as well as the generation of customized fashion
commercials that change depending on the viewer, weather,
and time. Moreover, the technology will allow people to create
digital clones of themselves and try on clothes online quickly,
have their avatars travel with them across e-stores, and try on a
bridal gown or suit in digital form, then virtually experience a
wedding venue. AI can also generate excellent artificial voices
that can assist companies and merchandise stand out [6].

The technology can be applied in criminal forensics to
reconstruct crime scenes digitally. Artificial Intelligence (AI)-
Generated synthetic media can assist in rebuilding the scene
using inductive and deductive reasoning, taking evidence
from the interrelationship of temporal and spatial artifacts.
In 2018, civil investigators used cellphone telephone videos,
post-mortem reports, and surveillance footage to reconstruct a
virtual crime scene of the killing of a protester [3].

II. IMPACT OF DEEP SYNTHESIZED MEDIA

The synthesized media has taken misinformation and disin-
formation to the next level. It has triggered an urgent need for
solutions amongst the professionals who relies on audiovisual
evidence, such as police investigators, journalists, human-
rights activists, talent analysts, and insurance plan companies.
A few impacts of synthesized media on different aspects of
society are discussed below:

People are more likely to respond to misinformation gen-
erated through forged video, audio, and images. It allows the
fake media to spread more rapidly than the pure form of data.
Additionally, the counterfeit media tend to generate a Mandela
effect of forming memories that never happened.

Deepfake can give an upward shove to exhaustion of seri-
ous thinking due to wondering over the deceived information.
People need to make more effort to determine the authenticity

of data, primarily when it does not originate from reliable
sources. Uncertainty about content reliability might also lead
to dropping in the dissemination of correct information.

The deceiver’s dividend may be another result of the use of
deepfake technology. Artificially generated content in movie
footage and video may lead the actors an avenue to deflect
impropriety charges by appealing that the source content has
been manipulated. The results can be troubling and might be
persistent in the future, as fake media’s excellence is increasing
daily, but social alertness lags.

The most common sources of misinformation come from
politics. Political parties may circulate altered information
to increase their ratings and discredit opponents. The role
of politicians in social networks is significant as they tend
to have many followers on social media platforms. They
can also utilize their public backing and celebrity status
to circulate misleading information among their supporters.
Moreover, fakes can be used to create political or religious
misunderstandings within the nations and across nations. It
can even generate fake or forged satellite images of a region
to contain things that do not exist. This may cause chaos in
the military and terror across a nation. So, deepfake can be
a technology that could fool the public, create confusion in
financial markets, and affect election campaign results with
the generated ultra-realistic media.

Fake media gained popularity due to the widespread avail-
ability of photographs and videos in social media posts.
Most deepfakes currently present on social platforms like
Twitter, Facebook, and YouTube may be harmless, artistic,
or entertaining. However, pieces of evidence are coming
up where they have been used for political or non-political
influence, revenge porn, financial fraud, hoaxes, and many
more troubling applications. As time passes, fake creation
tools are becoming more widely available. Social media sites
make it easier for users to spread and share such fake content,
making it urgent to keep track of. Deep learning approaches
have sparked much interest in this field for generating and
detecting deepfakes and, in many scenarios, have addressed
the issue of seeing false photos and videos.

III. RECENT DEVELOPMENT ON GENERATIVE NETWORK

AI-generated synthetic media has grown ubiquitous in our
digital world. The recent state-of-art techniques can gener-
ate ultra-realistic synthesized media, which traditional means
cannot detect. Several machine learning and deep learning
algorithms produce credible deceptive media. However, deep
learning architectures, such as Generative Adversarial Net-
works or Variational Autoencoder (VAEs), are most commonly
employed to create hyper-realistic images, movies, and audio.
Variations of GANs could also be found in the recent literature
to adapt to varying tasks and varying domains of generating
realistic media.

The advancement in adversarial techniques has fueled the
rapid development of media forgery. The GAN algorithms
have been widely used in many modern deepfake generation
approaches [7], [8]. It is a prominent method based on neural



networks [9] and works on the idea of setting dual neural
networks in conflict with one another, i.e., the generator G
that generates the output image and the discriminator D
that determines whether it is fake or real [8]. The generator
G generates fake data xg to mislead the discriminator D.
D also learns how to differentiate between the fake media
(xg = G (x) where z ∼ N ) and real media (x ∈ X). G and
D are trained on an adversarial loss, respectively, as follows,

Ladv (D) = max logD (x) + log (1−D (G (z))) (1)

Ladv (G) = min log (1−D (G (z))) (2)

Earlier attempts at GANs were at generating convincing
imagery of simple image datasets such as MNIST digits.
However, they had a more challenging time mimicking more
complicated images. More recently, computational techniques
have also been introduced to generate convincing facial im-
agery and increase the generated imagery’s resolution.

A. Methods of media forgery

1) Traditional media forgery techniques: The following are
the key classes within which deepfakes are created [1].

1) Face swap: Face replacement is a technique within
which the person’s face is mechanically replaced by the
start of the target video.

2) Lip-syncing: The impulsive recording is employed to
switch the supply video to form a video with a regular
mouth region.

3) Puppet-mastery: Face re-enactment is a technique in
which the person within the test video controls the facial
expression and movements of the person in the target
video or image. In puppet-master deep fakes, an individ-
ual sitting ahead of a camera supervises the movement
and distortion displayed in a very exposure or video. The
supply identity is swapped out for the target identity
during this technique (identity manipulation). On the
other hand, puppet mastery and lip-syncing techniques
are involved with manipulating facial expressions.

4) Face creation and attribution manipulation: Faux facial
pictures and attribute fabrication are the topics of face
synthesis and attribute manipulation.

B. Deepfake Generation Techniques

There are two major approaches in deepfake generation;
these are FaceSwap and Face Synthesis. A target face is
swapped onto a source face, and facial features are synthesized
in the former. The recent high-resolution Face Swapping
method from Disney Research is a very successful face-
swapping method [19]. Similarly, the LandmarkGAN is a Face
synthesis method based on facial landmarks as input [20].
Some of the popular deepfake applications are discussed as
follows.

1) FakeApp: FakeApp was the first commonly used tech-
nique for generating DeepFake. The fake program can
switch faces on clips using an autoencoder-decoder
pairing structure built by a Reddit user. Like GAN, an

Fig. 1: Cycle-GAN [21].

autoencoder is used to construct latent features of human
face images. The decoder used to re-extract the features
produces highly realistic fake videos that are hard for
people to differentiate from the real.

2) VGGFace: VGGFace is a deepfake creation technique
based on GAN. The model contains two additional
layers:

• Adversarial loss: It makes the distribution of gen-
erated images match the accurate attribute distribu-
tion.

• Perceptual loss: They are used when comparing two
similar ideas, like the same photo but shifted by one
pixel. The process may produce high differences be-
tween images using content and style discrepancies.

3) CycleGAN: It is an approach [21] that uses the GAN
architecture to extract the properties of one image and
produce another photo with the same attributes. This
method applies a cycle loss function that enables them
to learn the latest features. Dissimilar to FakeApp,
CycleGAN is an unsupervised method that can perform
the image-to-image conversion without using paired
examples (see Fig. 1). The model learns the features of
a collection of images from the source and target that do
not need to be related to each other. The model contains
two parts:

• In CycleGAN, first of all, we take image input and
convert it into the reconstructed image with the help
of the generator. Then this reconstructed image is
fed into another generator to convert it back to the
original image. Then we calculate the mean square
error loss between the real and the reconstructed
image.

• The main benefit of using CycleGAN is that the
model learns the features from the source and trans-
lates them to the unrelated target.

C. Challenges in media forgery techniques

Although extensive efforts have been shown to improve the
visual quality of generated deepfakes, several challenges still
need to be addressed. A few of them are discussed below.

1) Generalization: The generative models are data-driven
and reflect the learned features during training in the



TABLE I: An overview of deepFake generation techniques. The limitations in the Table are derived from respective references.

Reference Techniques Features Dataset Limitations
Face Swap

Faceswap [10] Encoder- Decoder •Facial landmarks •Private
• Blurry results due to lossy compression
• lack of pose, facial expressions, gaze direction, hairstyle, and lighting
• Requires a massive number of target images

FaceswapGAN [11] GAN •VGGFace •VGGFace • Lack of texture details and generate overly smooth results

RSGAN [12] GAN •Facial landmarks, segmentation mask •CelebA • Sensitive to variation in angle, occlusion, lightning
• Limited output resolution

Lip Syncing

LipGAN [13] GAN • VGG-M network
• MFCC audio features • LRS2 • Visual artifacts and temporal inconsistency

• Unable to preserve source lip region characteristics

Wav2Lip [14] GAN • Mel-spectrogram representation • LRS2 • Lacks the synthesis of emotional facial
expressions

Face reenactment

Face2Face [15] 3DMM
• Parametric model
• Facial landmark
features

• customized • Sensitive to facial occlusions

FSGAN GAN+RNN • Facial landmarks
• LFW parts label set

• IJB-C dataset
(5500 face videos)
• VGGFace2
• CelebA
• Figaro dataset

•The identity and texture quality degrade in case of large angular differences
• Fail to capture facial expressions fully
• blurriness in image texture
• limited to the resolution of training data

Face Synthesis
Karras et al. [16] StyleGAN • Deep Features • ImageNet • Blob-like artifacts

Huang et al. [17] TP-GAN • Deep Features • LFW • Lack fine details
• Lack semantic consistency

Face attribute Editing

Fader Network Encoder- Decoder • Deep Features • CelebA • Unwanted distortion and blurriness
• Fails to preserve fine details

Perarnau et al. [18] IcGAN • Deep Features • CelebA
• MNIST • Fails to preserve original face identity

output. Training requires a lot of data to generate high-
quality fake content. Moreover, the training process
requires hours to produce effective deepfake audio-
visual content. Usually, it is easier to obtain a dataset
of the driving content. However, the availability of
sufficient data for a specific victim is a challenging
task. Also, retraining the model for each specific target
identity is computationally complex. Because of this, a
generalized model is required to enable the execution
of a trained model for multiple target identities unseen
during training or with few training samples available.

2) Identity Leakage: The preservation of target identity
is problematic when there is a significant mismatch
between the target and driving identities, specifically
in face re-enactment tasks. Here some source identity
drives target expressions. The facial data of the driving
identity is partially transferred to the generated face. It
occurs when training is performed on single or multiple
identities, but data pairing is accomplished for the same
identity.

3) Paired Training: A trained, supervised model can gen-
erate high-quality output at the expense of data pairing.
Data pairing generates the desired outcome by identify-
ing similar input examples from the training data. This
process is laborious and inapplicable to those scenarios
where different facial behaviors and multiple identities
are involved in the training stage.

4) Pose Variations and Distance from Camera: Existing
techniques generate good target results for frontal fa-
cial view. However, the quality of manipulated content
degrades significantly in scenarios where a person is
looking off-camera. It results in undesired visual artifacts
around the facial region. Furthermore, another big chal-

lenge for convincing deepfake generation is the facial
distance of the target from the camera, as an increase
in length from capturing devices results in low-quality
face synthesis.

5) Illumination Conditions: Current fake generation ap-
proaches produce fake information in a controlled en-
vironment with consistent lighting conditions. However,
an abrupt change in illumination conditions, such as in
indoor/outdoor scenes, results in color inconsistencies
and strange artifacts in the resultant videos.

6) Occlusions: One of the main challenges in a generation
is the occurrence of occlusion. It results when a hand,
hair, glasses, or other items obscure the face region of
the source and victim. Moreover, occlusion can result
from the hidden face or eye portion, which eventually
causes inconsistent facial features in the manipulated
content.

7) Temporal Coherence: Another drawback of generated
deepfakes is the presence of evident artifacts like flick-
ering and jittering among frames. These effects occur
because the generation frameworks work on each frame
without considering the temporal consistency. Some
work provides this context to the generator or discrim-
inator to overcome this limitation, consider temporal
coherence losses, employ RNNs, or combine all these
approaches.

8) Lack of realism in synthetic audio: Though the
quality is undoubtedly improving, there is still a need
for improvement. The main challenges of audio-based
deepfakes are the lack of natural emotions, pauses,
breathiness, and the pace at which the target speaks.
Based on the limitations mentioned above, there exists
a need to develop effective deepfake generation methods.



They must be robust to variations in illumination con-
ditions, temporal coherence, occlusions, pose variations,
camera distance, identity leakage, and paired training.

IV. MEDIA FORGERY DETECTION TECHNIQUES

Deep learning has provided enormous success in detect-
ing fake media. Existing methods have focused on leftover
spatial or temporal artifacts from the creation process or
data-driven classification. Inconsistencies, irregularities in the
background, and GAN fingerprints are among the spatial
artifacts. Examples of temporal artifacts include detecting
changes in a person’s behavior, physiological signs, coherence,
and video frame synchronization. All detection algorithms
used handmade features-based or deep learning-based methods
for feature extraction. This part will first review handcrafted
feature-based technologies, followed by deep learning-based
techniques.

A. Traditional Techniques (image and signal processing)

(i) Characteristics of original and fake images (from a
perspective of signal processing)

1) Optical Flow Generation: Optical flow fields for each
frame are generated to detect the pattern of apparent
motion in the individual pixels on the image plane (see
Fig. 2). It is used to extract the distribution of apparent
velocities of movement of brightness patterns in an
image. Optical flow can be divided into two types:

a) Sparse Optical Flow: A specific set’s motion vector
will be computed.

b) Dense Optical Flow: Vectors for every pixel in
the frame will be computed, giving more accurate
results than in sparse optical flow.

Optical flow works on several assumptions:
a) The pixel intensities of an object do not change

between consecutive frames.
b) Neighbouring pixels have similar motion.

Consider a pixel I(x, y, t) in the first frame. It moves
by distance (dx, dy) in the next frame after dt time.
Since those pixels are the same and the intensity does not
change, we can say, I(x, y, t) = I(x+dx, y+dy, t+dt)
Then take the Taylor series approximation of the right-
hand side, remove common terms, and divide by dt to
get the following equation:

fxu+ fyv + ft = 0 (3)

Where:

fx =
∂f

∂x
; fy =

∂f

∂y
u =

dx

dt
; v =

dy

dt
(4)

The above equation is called the optical flow equation.
In it, we can find fx and fy; they are image gradients.
Similarly, ft is the gradient along time. But (u, v) is
unknown. We cannot solve this one equation with two
unknown variables.

Fig. 2: Optical flow for original(left) and deepfake(right) [22]

Amerini et al. [22] introduced a new technique to detect fake
videos from original ones. In particular, unlike state-of-the-
art methods, which usually act in a frame-based fashion, [22]
presents a sequence-based approach dedicated to investigating
possible dissimilarities in the temporal structure of a video.
Specifically, optical flow fields have been extracted to exploit
inter-frame correlations to be used as input of CNN classifiers.

B. Deep Learning based Detection

Deep learning approaches have been successfully employed
for counterfeit picture detection recently. However, because of
the significant loss of frame information following video com-
pression, current deep-learning methods for image recognition
cannot be easily applied to fake video detection.

Detecting using color cues: The forensics community has
started to develop algorithms to identify whether or not a
particular image was produced by a network trained in a GAN
framework. One solution relies on the frequency of blinking
in DeepFake-style films [23] to detect GAN videos. Instead
of relying on semantically relevant signals, some systems
employ machine learning and neural networks to discriminate
GAN from genuine pictures. McCloskey et al. [23] approach,
which is complementary to the forensics mentioned above,
is to analyze the structure of the GAN’s generator and see
how it impacts image statistics. The multiple depth layers are
combined in a weighted sum to create a color value at each
pixel, with the weights being uniform over the spatial extent
of the output.

Further, for this forensic, the hypothesis is that the frequency
of saturated and under-exposed pixels will be suppressed by
the generator’s normalization steps. It suggests a straightfor-
ward GAN image detector, where one can simply measure
the frequency of saturated and under-exposed pixels in each
image.

Discovered by irregular pupil shapes: Guo et al. [24]
use the boundary intersection-over-union score for the actual
mask and the anticipated pupil mask for each image to detect
fraudulent photos. Face landmark segmentation and pupil
retrieval are performed using EyeCool. An ellipse-fit pupil
mask is created using the Least Square-based ellipse-fitting
method—only mask pixels of the pupil within a pixel distance
of the pupil’s. Outer boundaries are evaluated using boundary



Fig. 3: Example images (top row) and grayscale histograms
(bottom row) for two real images (left, right) and one GAN
image (center) from [24]. Whereas the real images feature
regions of under or over-exposure (left and right images, re-
spectively), GAN images (e.g., center) lack saturation regions
even when the background is white [24].

intersection-over-union. It gives a [0,1] score; a higher value
indicates that the form is closer to the expected elliptical shape,
implying a greater chance of an original face. A limitation
found in the [24] method gives false positives when pupil
shape is distorted in a natural image due to disease and
infection in the pupil or iris region.

Discrete Wavelet Transform-Based Detection: The pro-
posed method [25] employs wavelet multi-scale decomposition
to extract the correlation characteristics between the spectra
of RGB channels. The proposed method employs wavelet
multi-scale decomposition to extract correlation characteristics
between the spectra of RGB channels. Decomposing the
two-dimensional image f(x, y) with discrete wavelet trans-
form(DWT), it can obtain

f(x, y) = WA
j +

∑
k≥j

(WH
k +WV

k +WD
k ), (5)

Here, WA
j is the low-frequency approximation under scale j,

and W i
k, i = H,V,D, k >= j It is the detailed component un-

der different image scales in horizontal, vertical, and diagonal
directions. The FID method performs well for other images
synthesized with State-of-the-art (SOTA) GANs.

The proposed methods work well only with fewer num-
bers and variety in images. They build a pixel-level image
detection model based on the deep neural network (DNN).
The method detects GAN-synthesized images by extracting
co-occurrence matrices on three color channels in the pixel
domain. Fake images synthesized by BigGAN and PGGAN
involve more image types and complicated image content.
StyleGAN-synthesized image is high quality and contains
three types, which are more challenging to detect.

V. DETECTION, CHALLENGES, ISSUES AND RECENT
DEVELOPMENTS

Although significant progress has been achieved in the
effectiveness of deepfake detectors, many issues with present
detection algorithms must be addressed. This section discusses
some of the issues of detection methods.

1) Deepfake Dataset’s Quality: The ability to access vast
databases of deepfakes is a key aspect of developing
detection algorithms. However, comparing the quality of
videos from these datasets to genuine modified content
distributed on the internet exposes significant discrep-
ancies. These databases can display a variety of visual
artifacts, including

a) temporal flashing during the speech,
b) blurriness around the facial landmarks,
c) over smoothness in facial texture/lack of facial

texture specifics,
d) lack of pose estimation movement or rotation,
e) lack of face obstructing objects such as glasses,

lightning effect,
f) sensitive to input posture or gaze variants, skin

color inaccuracy, and identification.

The ambiguities in the dataset indicated above are due
to errors in the manipulation procedures.

2) Performance Evaluation: Deepfake detection algorithms
are currently phrased as a binary classification issue
in which each sample might be real or fake. Such
classification is easier to develop in a controlled set-
ting. Researchers construct and test deepfake detection
systems using either actual or generated audio-visual
content. However, in real-world circumstances, films can
be altered in ways other than deepfakes; thus, footage
that has not been discovered as manipulated is not
always authentic. Furthermore, a single label may not
be correct because fake content can be altered in various
ways, such as audio/visual. Furthermore, one or more
people’s faces are usually modified with fake methods
over a segment of frames comprising numerous people’s
faces in visual footage. The binary classification method
should be upgraded to multiclass/multi-label and local
classification/detection at the frame level to deal with
the challenges of real-world settings.

3) Lack of Explainability in Detection Methods: Existing
deepfake detection methods are typically built to analyze
an extensive dataset in batches. However, when journal-
ists or law enforcement use these tools in the field, there
may only be a small number of recordings available for
analysis. Suppose a numerical score corresponding to the
likelihood of an audio or video being real or fake cannot
be verified with proper proof of the score. In that case, it
is not as valuable to practitioners. In some instances, it’s
typical to seek an explanation for the numerical score
for the analysis to be believed before it’s published or
used in court. The majority of detection methods are
ineffective in such cases. However, if sufficient samples
and time are available, post hoc methods like SHAP or
LIME can help.

4) Temporal Aggregation: Current approaches do not take
into account temporal consistency between frames,
which can lead to two issues:

a) fake content can show temporal artifacts, and



b) real or fake frames can occur in sequential in-
tervals. Furthermore, these methods necessitate an
extra step to compute the video integrity score, as
they must integrate the scores from each frame to
obtain a final result.

5) Social Media Laundering: The main internet networks
utilized to spread audio-visual information among the
public are social platforms like Twitter, Facebook, and
Instagram. Before uploading, such content is cleansed
of meta-data, down-sampled, and severely compressed
to conserve network bandwidth or protect the user’s
privacy. These alterations, also known as social media
laundering, remove signs of underlying forgeries and, as
a result, increase the number of false positives detected.
Social media laundering has a more significant impact
on most deepfake detection techniques that use signal
level key-points. Including simulations of these effects
in training data and expanding the assessment databases
to include data on social media-laundered visual material
is one way to improve the accuracy of identification
algorithms over social media laundering.

A. List of Dataset

To analyze the detection accuracy of offered approaches,
it is critical to have a good and representative dataset for
performance evaluation. Furthermore, the strategies should be
verified across other datasets to demonstrate their generaliz-
ability. As a result, over the years, researchers [26] have spent a
tremendous amount of time establishing standard databases for
modified visual and audio information. Some of the datasets
are:

1) VGGFace2: The dataset [27] contains 3.31 million
images of 9131 subjects, with an average of 362.6
images for each subject. Images are downloaded from
Google Image Search and have large variations in pose,
age, illumination, ethnicity, and profession (e.g., actors,
athletes, politicians).

2) Fake Face Dataset (DFFD): Recently, another dataset
called Diverse Fake Face Dataset (DFFD) was intro-
duced by Dang et al. [28]. DFFD contains 100,000
and 200,000 fake images generated using state-of-the-art
methods (ProGAN and StyleGAN models). The dataset
includes approximately 47.7%

3) DeepfakeTIMIT: Korshunov et al. [29] created a dataset
of videos called DeepfakeTIMIT. Using a GAN-based
method, it uses the database to create a collection of
swapped-face videos. The dataset was used to create a
lower quality model with 64×64 input/output size and
a better quality model with 128×128 input/output size.
There are 32 subjects in each non-real video library. For
each subject, the author made ten fake videos.

4) Celeb- DF: The Celeb-DF dataset was developed by
[30] that contains 5,639 DeepFake videos, equivalent to
over 2 million frames. The genuine source films were
created from publicly available YouTube video clips
of 59 celebrities of various genders, ages, and ethnic

backgrounds. An updated DeepFake synthesis approach
is used to create the DeepFake videos.

5) DFDC: The Facebook DeepFake detection challenge
dataset [31] is part of the DeepFake detection challenge,
which has 4,113 videos created based on 1,131 original
videos of 66 consented individuals of various genders,
ages, and ethnic groups. This dataset is created using
two different synthesis algorithms, but the details of the
synthesis algorithm are not disclosed.

6) FaceForensics++: FaceForensics++ is a forensics dataset
comprising 1000 original video sequences manipulated
with four automated face manipulation methods [32]:
Deepfakes, Face2Face, FaceSwap, and Neural Textures.
The data has been sourced from 977 YouTube videos.
All videos contain a trackable, mostly frontal face with-
out occlusions, enabling automated tampering methods
to generate realistic forgeries.

7) OpenForensics: OpenForensics dataset [33] is created
to pose a high level of challenges in localizing forged
faces among multiple human faces in in-the-wild scenes.
This dataset is explicitly designed with face-wise rich
annotations for face forgery detection and segmentation.

VI. CONCLUSION AND FUTURE DIRECTIONS

The recent generative models have more advanced ap-
proaches to synthesized media, such as attribute manipulation
and conditional attribute insertion. These methods make the
synthesized media much more realistic and challenging to
detect, even with the best adversarial detection modalities.
Again synthesized media with mixup augmentation are hard
to distinguish, as these contain both natural and synthesized
components and are thus generalized.

In conclusion, adversarial techniques have gone through
a significant advancement. Traditional detection techniques
can no longer detect or classify synthesized media with
these techniques. However, several new approaches are being
proposed to tackle these issues, such as combining traditional
optical flow with deep-learning techniques and incorporating
an attention-based network for temporal analysis. Many groups
are also offering to include conventional digital forensic meth-
ods, such as the use of noise fingerprints of sensors along with
deep-learning techniques. This led to constructive competition,
culminating in many official challenges, such as a profound
fake challenge by MetaAI. All these developments are leading
to better detection and fake media surveillance facility.
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