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Abstract—Crash Risk (CR) prediction is essential for Intelli-
gent Transport Systems(ITS), particularly for vehicular users’
safety. The rapid development in multivariate deep learning
techniques and the emergence of Vehicle to Everything (V2X)
communication make it possible to predict CR in smart cities
more quickly and precisely. Currently, CRs are predicted using
Time-To-Collide, which depends on various interaction data of
two conflicting entities. We inspect several factors affecting the
CR, like speed, acceleration, Deceleration Rate to Avoid Crashes
(DRAC), and Post Encroachment Time (PET). We develop a
multivariate LSTM and RNN-ATT model to predict crashes that
may occur within the next three seconds based on the past seven
seconds of vehicle data. It is simulated on high-density roads of
the Ahmedabad city map generated using the Open Street Map.
The proposed framework coupling SUMO as traffic simulator
and NS-3 as network simulator results in an optimal prediction
horizon of 3s with a Root Mean Squared Error of 0.0611. The
finding of this paper indicates the promising performance of
the proposed framework and LSTM model with an accuracy
of 88.20% to deploy in the Indian ITS for real-time crash
prevention.

Index Terms—Crash Risk Prediction, Collision Prevention,
SUMO, ns-3, multivariate-LSTM, RNN-ATT

I. INTRODUCTION

Every year around 1.3 lakhs deaths are caused by hazardous
road crashes in India [1]. Road safety is a high priority for
Indian transportation. Connected Vehicle Environment(CVE)
advancement is considered a boon for road users. Many
pieces of literature have shown that CVE data greatly improve
road safety by identifying hazardous road crashes [2]- [3].
Researchers have been working on Proactive Traffic Safety
Management (PTSM). It is a method to prevent crashes and
take active countermeasures based on crash risk prediction in
real time using uni-variate long short-term memory (LSTMs),
and Multi-Layer Perceptron models [4]- [6]. Past studies have
been conducted on crash detection [7] and crash severity
and evaluated safety-related anomalies based on different
thresholds of time-to-collide (TTC). TTC is a well-known
surrogate safety measure (SSM) to assess crash potential,
which has been employed as a threshold for collision detection
[8]. Systems like forward collision warning systems, lane
changing warning systems, and advanced driving assistance
systems (ADAS) have been developed to continuously mea-

sure the SSMs using in-vehicle distance sensors like radar
and lidar. These solutions have limitations when there is a
Non-Line of Sight (NLOS). Some of the in-vehicle systems
collect hazardous crash information and transmit warnings
to the adjacent vehicles through Vehicle to Vehicle (V2V)
and Vehicle to Infrastructure (V2I) [9]. In addition, studies
have been conducted to enhance road safety using fuzzy logic
approaches and extreme value theory approaches [10]— [11].

From the viewpoint of Indian traffic, passengers with
heavy vehicles are better subjects for implementing advanced
autonomous solutions for accidental risk prediction and en-
hancing road safety. Hence, encouraging partial CVE in India
would be the first step towards PTSM where all the heavy vehi-
cles communicate directly on the road, typically equipped with
3rd Generation Partnership Project (3GPP) Cellular Vehicle-to-
Everything (C-V2X) standard transmission capabilities [12].
The 3GPP standard was released in 2017(Rel. 14), replacing
the WiFi-based IEEE 802.11p standard for vehicle commu-
nication. Using C-V2X LTE (Long-Term Evolution) PC5
communication can save more fatalities and severe injuries
than using IEEE 802.11p (DSRC), according to a study [13]
that compares these two. It is because C-V2X communication
is more reliable and enables the omnidirectional sharing of
safety messages and vehicle information, such as speed and
location, using a V2V connection. In [26], they have intro-
duced open-source analytical models for C-V2X mode 4. It is
for reliability, and various transmission errors in C-V2X mode
4 are developed and validated for a wide range of transmission
parameters and traffic densities.

Generating warning information for drivers is one of the
most effective active countermeasures, as it encourages them
to take good evasive actions to prevent crashes. For such
effective PTSM, an optimal prediction model should be used
for delivering in-vehicle warning alerts with high accuracy and
reliability to reduce the number of crashes [14]. It motivates
the study to develop a prevention system using multivariate
deep learning models. This paper contributes towards devel-
oping an in-vehicle crash prevention framework leveraging
real-time vehicle communication and an accurate crash risk
prediction model. The human perception reaction time is also
considered to prevent the occurrence of hazardous crashes and
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Fig. 1. 3GPP Release 14 C-V2X Sidelink network model.

increase road safety in a CVE. We have implemented different
scenarios coupling SUMO and NS-3 simulators for this study.
Additionally, we have attempted to create an optimized model
by tuning the time scaling parameter and hyper-parameters,
which impacts the model accuracy when a model is built using
time series traffic data.

II. NETWORK MODEL AND PROPOSED FRAMEWORK

The proposed framework is for a CVE that considers cars
and heavy vehicles. All the vehicles consist of On-Board Unit
(OBU) in this environment. The OBU will be connected with
the neighboring OBUs leveraging the PCS5 interface Sidelink
communication of C-V2X. They broadcast the vehicle’s posi-
tion (x,y) data, acceleration, and speed for the past 7 seconds.
In addition, it will be included in the Cooperative Awareness
Message (CAM) of 190 bytes following the sidelink standard
with a baseline distance range of 150-200m. The leveraging
of direct V2V links causes a maximum of 0.02s of latency to
broadcast the CAM for pre-crash sensing purposes.

The other OBU will receive the vehicle data and compute
the vehicle interaction data (TTC, DRAC, PET, CRI) for the
same past 7 seconds. Then the crash prediction model will
predict the crash risk after 3 seconds. This computational
time will be 0.2 to 0.3 seconds. If the predicted CR exceeds
the threshold, the OBU will generate an In-vehicle Warning
Alert, alerting the driver about the target vehicle and the high
crash risk. A critical factor for traffic safety is the minimum
time required for drivers to react to certain situations, called
Perception Reaction Time (PRT). For example, a driver has a
minimum PRT of 0.7 seconds to an alert sound while driving
on the road [19]. It will give the driver two seconds to change
the vehicle speed and avoid obstacles. Hence, we can prevent
the crash, knowing that most hazardous collisions are due
to human error. Moreover, the prevention reliability increases
because both conflicting entities will perform their prediction
and generate the in-vehicle warning alert. Hence, even if one
OBU misses the detection, there’s a probability that the other
OBU can still detect it.
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Fig. 2. Proposed framework for crash prevention.

A. Network Model

The network model of 3GPP Release 14 Sidelink com-
munication is shown in Figure 2. Release 14 is considered
for implementation because higher releases provide 5G-based
systems, implying incompatibility and higher costs compared
to 4G-based solutions for India. It plays a significant role in
designing a reliable public safety network, allowing the OBUs
to communicate directly in high-risk scenarios. It supports
LTE-V2X to enable connected vehicular services and provide
safer and more efficient transportation, accommodating many
nodes (vehicles) [15].

In this study, Sidelink communication establishes direct
communication between V2V over PC5 reference point. PC5
refers to a reference point where the OBU directly com-
municates with another OBU over the direct channel and
enables proximity services [16]. In such cases, base station
communication is not required. Instead, it uses a specific air
interface technology called E-UTRAN (Evolution Universal
Terrestrial Radio Access Network) and uses Radio Frequency
for V2V communication. E-UTRAN can pre-crash sensing
information transmission between OBUs with a maximum
latency of 0.02s [17]- [18]. Its primary use case is for road
safety. It also helps efficiently communicate vehicles in NLOS
but within the baseline distance.

B. Data Collection and Preprocessing

This study uses passenger vehicles, trucks, and buses as
probe vehicles. The data was collected from the SUMO
simulated environment via TraCI (Traffic Client Interface).
There are two types of data, i.e., vehicle data and vehicle
interaction data. Vehicle data consist of position (x, y coordi-
nates), speed (m/s), vehicle class, brake rate, and acceleration.
Vehicle interaction data is the computed data between the
two conflicting entities. Vehicle interaction data includes TTC
(seconds), DRAC (m/sQ), PET (seconds), Time headway,
and Space gapping as safety measures. Vehicle interaction



data is calculated in multiple ways for following, leading,
merging, and crossing situations, but post-encroachment time
is for crossing situations only. DRAC is based on the required
braking power to avoid a collision. In contrast, PET is the time
difference between a vehicle entering the encroachment area
and a conflicting vehicle leaving the same area [20]. TTC is
the time before the collision happens between two conflicting
entities on their trajectories if their speeds would not change.
Vehicle Interaction data can also be obtained from the ADAS
systems for PTSM.

spaceGap
TTC = 1
speedDif ference M
DRAC — 0.5 x (speedDif ference)? 2)
spaceGap
PET = entryTime A — exitTime B 3)

A total of 5,70,000 data samples were collected according to
traffic flow characteristics with 5 features of 2750 vehicles in 3
different scenarios. Around 10,000 data samples were removed
with NA values wherever a time series break was encountered.
The acceleration and speed of each vehicle were collected
by the traci.getAcceleration(vehID) and traci.getSpeed(vehID)
TraCI APIs in SUMO, and the maximum acceleration was
capped till 5m/s? for heavy vehicles. For data preprocessing,
features like speed, DRAC, and PET were scaled between 0
and 1, whereas acceleration was scaled between -1 and 1,
considering negative acceleration values. According to [21],
TTC less than or equal to 2 seconds results in hazardous
events. Hence, the TTC in data is imputed between 0.01 and 2
seconds. The Crash Risk Index (CRI) is an exponential decay
function of TTC defined by y = a + bexp(—z/c). CRI is an
estimated crash potential of a vehicle based on the TTC. In
this study, we have considered {a,b,c} = {0, 1, 1.87} as per
[22]. CRI estimation from the TTC is mentioned in equation

(G2

—TTC
)

CRI = e~ “)

The data is divided into input and output data generated
as continuous time series with two Time Scaling Parameters
(TSP). TSP includes rolling time (5,7 seconds) and forecast
horizon (2,3,4 seconds) with an interval timestep of 1 second.
These TSPs are determined according to the characteristics
of the collected data. Rolling time is a sliding window size,
defined as turning a single time series into multiple time
series, each ending one timestep later than the previous one. A
forecast horizon is the length of time into the future for which
forecasts are to be prepared. Different models are trained for
a total of six datasets scenarios formed with the combinations
of TSPs, as shown in Table 1.

C. Crash Risk Prediction Models

The model predicts the CRI of the vehicle after the forecast
horizon. It uses the past data of the specific rolling time. Mul-
tivariate datasets relating to temporal sequences are difficult
to align. It requires framing all the datasets as a supervised
learning problem and normalizing the input variables. The
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TABLE I
DATA COLLECTED FROM SUMO.

Rolling Forecast Training Testing
Time(s) | Horizon(s) data data

5 2 2,58,937 1,10,973

7 2 1,82,650 | 0,78,279

5 3 3,97,050 1,70,165

7 3 3,838,007 1,66,572

5 4 3,92,854 1,68,366

7 4 2,47,899 1,06,243

temporal data of n number of vehicles is converted in a 3-
D matrix with a single input I} at time ¢ for vehicle i being a
2D matrix of dimension 7 x 5. In simple terms, input is formed
with the rolling time (rt) having 5 features at every timestep
as shown in equation 5. Consider speed (S), Acceleration (A),
DRAC (D), PET (P), and Crash Risk Index (C) are the features
of a particular vehicle i at that timestep. Here, our output is
a single-valued variable CRI after a forecasting horizon of fh
seconds in equation (6).
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(5)

Output = [C*HIM] (6)

We have considered two multivariate multi-step deep learn-
ing models: LSTM and the Recurrent Neural Network-
Attention model. Both models are currently well-known to
capture long-term dependency and extract the time-variant fea-
tures of vehicle data. In addition, these models can explicitly
learn from the various features of crash risk and hazardous
forecast crashes.

1) Multivariate LSTM: Multi-step LSTM layer works on
a block-wise structure based on the output of the previous
timestep. The model was developed by optimizing the TSPs
and hyperparameters for better accuracy. Hyperparameters



such as the number of hidden units(numHidden), batch size,
and the number of epochs are tuned for the same. Epochs
are the parameter that shows how many times the learning
of training data takes place. This study attempts to minimize
prediction errors by adjusting the number of hidden units
in both models. The hidden layer of LSTM computes the
result of processing the input value through the activation
function at that unit. The number of units of the hidden layer
is increased to deepen the network and improve the neural
network’s performance. The batch size used is 32 generally,
and the number of epochs varies between 40 and 50. The
Adam optimizer keeps the learning rate tuned with the training
data. It is known that LSTM helps with the vanishing gradient
problem in time series data.

A single block takes three inputs, such as the input of
the current time step, output (h'~!) of the previous unit,
and the memory (C*~1) of the last unit. The output state
is derived through the adjustment of the input weights W,
recurrent weights R, and biases b, which are indicated W =
W;WW,|', R = [R;RfR,)’, and b = [b;bsb,]". Here, the
input gate is i, the forget gate f, and the output gate o. The
LSTM layer is followed by a single dense layer as shown in the
model architecture in Figure 3. It connects all the hidden states
output from the LSTM layer and integrates them into a one-
dimensional array. At last, the output layer receives neurons
from the dense layer and gives the predicted crash risk index
corresponding to fh, which is the forecasting time window.

2) Multivariate RNN-Attention: Similar to LSTM, the same
hyperparameters were set for the RNN-ATT model to compare
the performance. This model consisted of a Recurrent Neural
Network with an Attention layer followed by a single dense
layer. The RNN layer exhibits temporal dynamic behavior for
sequential data. It consists of three layers, i.e., Input, Hidden,
and Output. It uses its previous internal states to process the
current input I!, at time ¢ for vehicle i. The output at any
given time is fetched back to the network to improve. It uses
the sigmoid activation function to determine whether a neuron
is to be activated. A fully-connected RNN connects the output
of all neurons to the input of all neurons and returns the entire
sequence of hidden output states. The attention layer takes
that sequence, selects the information that needs to be given
significance to store in model memory, and decides how much
attention to pay. It automatically updates its weights, passing
them through fanh and softmax. The softmax activation ben-
efits the predicted multinomial probability distribution vector
called the output layer of attention. At last, the output vector
is passed through a fully-connected dense layer to forecast a
single-valued output, CRI of time r+fh.

III. EXPERIMENTS

The lack of availability of a literature dataset containing
vehicle and vehicle interaction data for each second in the
context of Indian cities’ roads and drivers made us build
the dataset from scratch. Besides, performing field tests in
Connected Vehicular Environments for high-density roads is
challenging and expensive.

Hence, to perform a proper vehicular environment simu-
lation, there are traffic simulators such as SUMO and PTV-
VISSIM, as well as network simulators such as NS-3 and
OMNET++. Researchers tend to couple these simulators to
facilitate the development of such applications and prepare
them for ITS. In this paper, we have coupled SUMO and
NS-3 to simulate the connected vehicle environment of the
C-V2X mode4 scenario and hazardous traffic situations. We
have considered all 3 types of conflict situations: merg-
ing, leading, following, and overtaking. Combining situa-
tion causes junction collisions, whereas lead/follow condition
causes Forward/Rear-end collisions, and overtaking causes
lane-changing crashes.

TABLE 11
NS-3 C-V2X MODE 4 CONFIGURATION PARAMETERS [23].
Parameters Values
Number of vehicles 5 to 100
Mobility SUMO tracefile
Simulation time 50s
Channel bandwidth 10, 20 MHz
CAM message size 190 bytes
Baseline distance 150 m
Transmission power 23 dBm
Resource block per subChannel 10
Num of subChannels 5
Modulation and coding scheme 20(QPSK)
Resource reservation period 100 ms
Subchannel scheme Adjacent

A. Simulation Scenario

A map of Ahmedabad city was extracted from Open-
StreetMap for simulating traffic. The vehicles focused on in
this paper are passenger vehicles, trucks, and buses because
they cause more hazardous crashes compared to motorcycles,
and more people are affected by them. In Ahmedabad, the
driver state has randomly distributed behaviors like Impa-
tience, Pushy, Red Light breaking, and speeding. It is because
80.5% of serious crashes are caused by human error [1]. We
have extracted five features, i.e., speed, Acceleration, DRAC,
PET, and TTC, of every second and every vehicle present in
the simulation. The vehicles enter the simulation at a random
rate. If there was a crash, the two vehicles were removed from
the simulation. All the vehicles are equipped with Surrogate
Safety measuring devices to compute the vehicle interaction
data whenever a neighboring vehicle is close.

A total of 3 hours of the simulation was performed with
three different levels of driver states. The entire data was
extracted from SUMO via Traci API for the model training,
whereas NS2MobilityHelper was used for the NS-3.

For implementation purposes, we have used ns-3 network
simulator. All nodes represent passenger vehicles, trucks, and
buses fully equipped with 3GPP Release 14 C-V2X standard
that uses an LTE PCS5 interface for V2V communications.
It efficiently connects the neighboring vehicles on peer-to-
peer basis and exchange vehicle data. All the nodes have the
adequate configuration parameters of C-V2X Mode 4 given in
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TABLE IIT
PREDICTION CONFUSION MATRIX.
LSTM RNN-ATT
High Risk | Low Risk | High Risk | Low Risk
True 10,934 43,738 16,593 32,807
False 707 6,604 1,669 10,914
*Forcast Horizon (FH) = 3 seconds

Table 1. It does not require the support of the cellular infras-
tructure. Vehicles can autonomously select their sub-channels
for their V2V transmissions i.e unsupervised. Cooperative
Awareness Messages are exchanged between vehicles within
a distance of 150m with a transmitting power of 23 dBm
[24]. The trace file extracted from SUMO contains timestamps,
nodes, and node data which will be simulated in this Open C-
V2X Mode 4 NS-3 simulator [25]. A total of four simulations
were performed with different simulation seeds, generating
four datasets from SUMO. From those datasets, three were
later used to train and test the model and for NS-3, and one
was used for the prediction and derived the confusion matrix.

IV. RESULTS

We have constructed 18 models based on the combinations
of six scenarios of TSPs and three hyperparameters to increase
the reliability of CRI prediction. Table IV shows the best-
performing combinations with their Root Mean Squared Error
(RMSE). As computed in equation 7, RMSE gives relatively
high weight to large errors because they are squared before
they are averaged. This performance metric helps improve the
CRI prediction when large errors are particularly undesirable.
CRI represents the predicted value, CRI is the actual value,
and N is the total number of data samples.

_ — 9
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Here, LSTM has significantly outperformed the RNN-ATT
model for every forecast horizon. As the forecasting horizon

(7

TABLE IV
MULTIVARIATE MODEL PREDICTION RESULTS.

RT FH Hyperparameters RMSE
(secs) | (secs) | numHidden | Epochs | LSTM | RNN-ATT
5 2 50 40 0.0537 0.0571
7 3 100 50 0.0611 0.0640
7 4 150 50 0.0670 0.0675

*RT = Rolling Time; FH = Forcast Horizon;

increases, the probability of error increases. The prediction
results for 2s are better than 3s. But 2s is a very short horizon
(considering the latency and PRT) for the driver to take any
active countermeasures and prevent crashes. Small forecasting
horizons perform well with short rolling times, whereas 3s
and 4s require 7s for better prediction. More past data leads
to a better knowledge of the situation; simultaneously, a very
high amount of data can lead to increased latency and packet
loss in wireless communication. At the same time, RNN-ATT
outperforms LSTM in terms of speed. Due to less trainable
parameters compared to LSTM, computation becomes faster
for RNN-ATT. But a slight change in accuracy makes a
considerable difference for human life in this crucial CRI
prediction. Figure 4 clearly shows a notable difference between
LSTM and RNN-ATT error rates for each epoch. Hence, this
study considers LSTM the best fit for implementation with a
forecasting horizon of 3s.

Leveraging C-V2X Sidelink communication is essential to
increase the reliability of pre-crash sensing. Considering the
maximum latency of 0.02s as per the network model, the total
computation time of 0.3s, and a minimum PRT of 0.7s leaves
us with an optimal choice of 3 seconds of forecast horizon to
feasibly prevent the crash and take active safety measures.

Hence, both the models with fh=3 and rt=7 and numHid-
den=100 are considered for prediction on the dataset collected
from SUMO. The final confusion matrix for that dataset is
shown in Table III. The threshold to consider the crash risk
high was set to 0.5, i.e., CRI > 50%. The threshold can
be tuned as per the requirement at the implementation time.
Lowering the threshold will detect the accident sooner but
will increase the warning alerts and false detection. Similarly,
having a high threshold can increase the risk of missed detec-
tion of hazardous crashes. There were 10,983 true positives
(alerting the vehicle for the high-risk scenarios) and 43,738
true negatives (when driving is safe) for the LSTM model,
while 16,593 true positives and 32,807 true negatives for the
RNN-ATT model from 61,983 predicted data samples.

Further comparison of the models is conducted based on
some basic measures of the confusion matrix to understand
their performance from different perspectives. LSTM has an
accuracy of 88.2% and a precision of 93.93%, while RNN-
ATT has an accuracy of 79.7% and a precision of 90.86%.
Accuracy is the true detection rate of a model, i.e., predicting
high risk when there is an actual high-risk scenario and
vice versa. Precision and Specificity are other performance
measures that show how precisely the model predicts high-



TABLE V
MODEL COMPARISON

LSTM | RNN-ATT
Accuracy | 0.8820 0.7970
Precision 0.9393 0.9086
Specificity | 0.9841 0.9516
F1-score 0.7494 0.7251

risk and low-risk strategies, respectively. Specificity is a true
negative rate, whereas Precision is a positive predicted value.
Fl-score is a combined measure of Precision and sensitivity
(also called true positive rate) in a confusion matrix. LSTM
has more effective predictions than RNN-ATT in terms of
Accuracy, Precision, Specificity, and the Fl-score shown in
Table V. Hence in the case of LSTM, we can detect high and
low CRI with the best accuracy and Precision of 88.2% and
93.93%, respectively.

V. CONCLUSION AND FUTURE WORK

This novel approach has considered all the aspects of a
crash, i.e., knowledge of N-LOS and LOS vehicles, human
error while driving, prediction with 88.2% accuracy, and the
perception reaction time to prevent the detected impact. In
future work, different scenarios can be considered to analyze
the scalability performance of various deep learning tech-
niques. There are some drawbacks of the LSTM model on
large input sequences. As the number of vehicles increases,
the computational time increases for the LSTM model at a
particular second. Hence, the various models’ scalability and
speed need to be contemplated in the future. Such a Crash
Prevention Framework for Proactive Traffic Safety Manage-
ment would help to increase road safety on high-density urban
roads as well as freeways and prevent heavy vehicle crashes
from occurring due to human error. Other vehicular categories,
along with road and weather conditions, should be considered
for future work. This framework can be further developed to
improve prediction accuracy and incorporate other classes of
vehicles to support road safety.
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