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Abstract. Gliomas, graded as type-IV tumors, are linked to poor prog-
nosis and low survival chances. An accurate survival prediction model
aids in strategically planning patients’ treatments. We derive a robust
feature set for accurate survival days (SD) prediction, including radiomics,
location-based features, and age from the triplanar segmentation net-
work. We study features’ global and local impact on SD using various
post-hoc explainable AI (XAI) methods. However, post-hoc methods can
produce different results for SD prediction, raising the question of in-
terpretability. Therefore, we cross-evaluated the results and found these
post-hoc XAI methods were consistent in their interpretations, indicating
the robustness of the feature set. Additionally, we establish the biological
significance of imaging features better to understand their impact on tu-
mor behavior and patient outcomes. Our SD prediction regressor model
outperforms current methods. BraTS2020 validation results showed im-
provements of 37.7% in accuracy, 16.85% in mean squared error, and
85.8% in Spearman’s rank correlation compared to the top-ranking model
of the BraTS2020 challenge.

Keywords: Brain tumor segmentation · interpretability · radiomics fea-
ture · random forest · survival days.

1 Introduction

Automated Brain tumor segmentation (BTS) and accurate prediction of Sur-
vival days (SD) for brain tumor patients are among the most critical tasks in
medical image processing. Developing a computational model capable of exceed-
ing human-level segmentation and accurately predicting SD would significantly
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enhance the capabilities of healthcare professionals. It would improve the pre-
cision, reliability, and standardization of disease diagnosis, treatment planning,
and monitoring. Gliomas, arising from glial cells, are the most prevalent and
highly malignant brain tumors, associated with elevated rates of morbidity, re-
currence, and mortality [21]. MRI scans are most widely used to diagnose tumors
because of their non-radiation, high resolution, and high contrast among soft tis-
sues. Multimodal BraTS (Brain tumor segmentation) challenge [6, 28] offers MRI
images, and the task includes segmenting tumor regions into Enhancing/Active
tumor (ET/AT), Tumor core (TC), and Whole tumor (WT). Following brain
tumor segmentation, the subsequent step involves predicting the survival days
for glioma patients. This prediction is based on extracting manually crafted fea-
tures from the segmented outcomes. Furthermore, the objective is to classify
the predicted SD into one of three categories: short-term survival (for patients
with SD < 300 days), mid-term survival (between SD 300 and 450 days), or
long-term survival (with SD > 450 days) [28]. Typically, the evaluation of SD
prediction performance involves using standard metrics such as accuracy (ACC),
Mean squared error (MSE), median squared error (medianSE), and the Spear-
man rank coefficient (SRC).

1.1 Challenges in Brain Tumor Segmentation and Survival Days
Prediction

Tumor cells display significant size, shape, and location heterogeneity, with com-
plex boundary interactions [37]. Moreover, challenges arise from variations in
imaging protocols and limited access to annotated data [33], leading to class
imbalance due to fewer tumor pixels. Similarly, predicting survival duration
is highly challenging, facing several vital factors, including dependency on the
BTS performance, limited availability of comprehensive clinical patient data,
and qualitative image characteristics obtained from radiographic images. Recent
research suggests that radiomic features hold the potential to capture crucial phe-
notypic details, including intra-tumor heterogeneity, offering valuable insights for
personalized therapy [44, 50]. However, their lack of uniform extraction protocol
and interpretability often constrain these features’ practical usefulness [15, 50].
Moreover, depending on Machine learning (ML) models for predicting BTS and
SD is often perceived as a black box due to the difficulty in interpreting deci-
sions, posing a significant challenge. Consequently, there is an increasing need
for Explainable AI (XAI) for ML models.

1.2 Recent Developments in BTS and SD Prediction

Recently, convolutional neural networks (CNN) have significantly progressed in
medicine. There has been a surge of 2D and 3D UNet-based networks and en-
semble methodologies proposed for BTS. For example, 2D DeepSCAN [26], 2.5D
ensemble model [34, 35, 41], 3D UNet [10], 3D UNet++ [53], 3D nnUNet [17],
3D Swin UNETR [16], 3D TranBTS [49] have been proposed. Each subsequent
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model has shown improved segmentation performance compared to the predeces-
sor model with added training parameters. 3D models and ensembles represent
the current leading approaches for tumor segmentation. Despite its remarkable
success in segmentation performance, several potential drawbacks exist, such
as the need for extensive annotated data, inherent complexity of models, vul-
nerability to overfitting, interpreting model, and performance limitations. More-
over, the many trainable parameters and high computational complexity present
challenges for achieving rapid medical image segmentation in real-time therapy
and diagnosis [51]. Therefore, many efficient networks have been introduced to
mitigate these limitations, maintaining high performance while addressing con-
straints. Examples include lightweight UNet [44] with atrous convolution blocks
[2], ERV-Net [52], ESPNet [27], and Triplanar network (TN/2.5D) [34, 35, 42].

Similarly, in the context of SD predictions, existing literature indicates that
morphological [3, 13, 33], spatial location [8, 36] and radiomics-based features [1,
24, 36] have demonstrated significant importance. In summary, the literature sur-
vey demonstrates that efficient and computationally lightweight networks have
the potential to achieve state-of-the-art performance for BTS. Furthermore, it
emphasizes the prevalence of statistical, shape, texture, and spatial features in
predicting the SD of brain tumor patients.

Hence, in this paper, we investigate the potential and consequences of em-
ploying computationally efficient networks for BTS in predicting survival days
of brain tumor patients. Additionally, we analyze the behavior of features used
for SD predictions and aim to establish the biological relevance of the top four
imaging features, ensuring alignment with medical insights through post-hoc
interpretability tools. For the BTS, we employed triplanar network (TN) net-
works [35]. In this TN approach, Multiple 2D models are trained on planar views
of MRI images (axial, coronal, and sagittal), and their segmentation outcomes
are combined to produce a final segmentation map. This approach effectively
balances computational efficiency and performance by integrating 3D and 2D
networks.

For predicting SD, we applied the methodology outlined in [36] to extract
image-based and radiomic-based features commonly found in literature surveys.
Further, Permutation importance (PI) and SRC were employed to select the
most significant features from the BTS TN networks. Additionally, we assess the
reliability and consistency of the feature set derived from these TN networks
for predicting SD. By increasing or decreasing SD, we used interpretation tools
to investigate how these features affect SD prediction in global (considering all
samples) and local (considering a single sample) scenarios. This analysis helps
us understand the impact of these features on SD prediction and identify their
biological significance with brain tumor characteristics. Post-hoc interpretation
methods have recently become essential for explaining ML models [45]. However,
different post-hoc interpretation techniques yield varying results for the same
task, which raises the question of which method is the most reliable for accurate
post-hoc interpretability [45].



4 Rajput et al.

Consequently, we cross-validated the visual graphs obtained for the features
from standard post-hoc interpretation methods and evaluated the robustness and
reliability of the feature set. We employed the BRATS2020 dataset to showcase
the effectiveness of our approach.

In summary, the primary contributions of this paper include:

1. Assessing the robustness of the feature set derived from the triplanar seg-
mentation network.

2. Evaluating the regressor model’s performance using the BraTS2020 valida-
tion dataset [39].

3. Generating visual representations to investigate how features contribute to
predicting the survival days of patients in both global and local scenarios.

4. Investigating the biological relevance of features and linking them with med-
ical insights.

The sections of the paper are organized as follows: In Section 2, we examine
the data sources and evaluation metrics. The methodology proposed for SD
prediction is detailed in Section 3, while Section 4 provides experimental results
and discussions. The Section 5 concludes and suggests future work.

2 Data sources

This study employs the BraTS challenge [6, 28] 2020 dataset. The challenge
provides a set of multi-modal magnetic resonance imaging (MRI) volumetric
images and promotes the development of algorithms to segment brain tumors
and predict the SD of patients. The data sources’ details can be displayed in
Table 1.

Table 1: BraTS2020 challenge dataset details.
No. of samples BTS (3D MRI Images) SD prediction (CSV file)
Training Set: 369 samples 236 (include Age, survival days,

and GTR status) (where 117
samples have GTR resection).

Modalities: T1-weighted post-contrast (T1Gd), T1,
T2-weighted (T2), Fluid Attenuated In-
version Recovery (FLAIR) and manual
ground truth segmentation

NA

Dimensions: 155×240×240 (Depth × Width × Height) NA
Annotations: Label 0 for background pixels, 1 for

NET/NCR, 2 for ED, 4 for ET, and 0
NA

Validation Set* 125 samples 29 samples (GTR status)
Test Set** 166 samples 107 samples (GTR resection

status)

* Ground truth labels are not accessible to the public.
** Test sets are only available to participants in the challenge.
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Fig. 1: The complete workflow of the proposed methodology for SD prediction.

3 Proposed Methodology for SD Prediction

This study focuses on predicting SD in glioma patients, and the entire workflow
of our proposed methodology is illustrated in Fig. 1. It emphasizes the critical
role of BTS in predicting SD, depicted in Fig. 2 for the structural diagram. For
our approach to SD prediction, segmentation results from the BTS task (dis-
cussed in Section 3.1) were used to extract features. In our study, we referenced
[36] work where the authors emphasized the robustness of the SD prediction fea-
ture set. Consequently, we extracted the same features from the TN used in BTS.
For further assessment of the robustness of these features, we employed various
evaluation techniques, including correlation maps and post-hoc interpretability
methods such as Shapley-additive explanations (SHAP) [22], accumulated local
effect (ALE) [4], local interpretable model-agnostic explanations (LIME) [38],
and partial dependency plots (PDP) [14]. This approach applies interpretation
techniques to a pre-trained ML model to understand its decision-making pro-
cess after training, enhancing transparency and explainability of the model’s
predictions.
3.1 Methodology for BTS

The work uses an ensemble of triplanar networks to generate segmentation re-
sults. It typically comprises three identical 2D UNet attention-based models
[34, 35], each trained separately on specific axial, coronal, and sagittal image
planes. The TN network ensemble is illustrated in Fig. 2b. The final segmen-
tation outcomes are derived by integrating the outputs from these individual
models illustrated in Fig. 3. Three unique lightweight attention mechanisms,
namely channel based attention (CA), concurrent channel and spatial based at-
tention (CCSAv1), and sequential channel and spatial based attention (SCSA),
were integrated with the TN network to create its various variants [34, 35]. The
basic architecture of 2D UNet is illustrated in Fig. 2a.
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Fig. 2: (a) Basic 2D UNet architecture. (b) The structural diagram of the BTS
network. Here, CA, CCSAv1, and SCSA are distinct attention mechanisms [34,
35].
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Fig. 3: (a), (b), and (c) display the axial, sagittal, and coronal planes of the in-
put (FLAIR) image, respectively, while (d), (e), and (f) show the corresponding
manual ground truth segmentation. Similarly, (g), (h), and (i) depicts the cor-
responding predicted segmentation maps for the planer view. The WT region is
represented by light brown, white, and dark brown, the ET region by white, and
the TC region by dark-brown and white [35].

Network implementation details The input MRI images are preprocessed by
performing bias field correction using the N4ITK tool [46], removing non-brain
pixels, eliminating the top and bottom 1% of intensity outliers, and normalizing
the intensity of each image slice. The input image slice dimensions are 192×152
for the axial model, 192 × 152 for the sagittal, and 152 × 144 for the coronal
model. In our training process, we applied random horizontal and vertical image
flips as part of our data augmentation techniques.

Fig. 2a depicts the primary network employed for all the models. It has a
basic encoder-decoder architecture. In the encoder stage, two convolution blocks
are connected like a residual block connection. Here, downsampling is achieved
through the strided convolutions. Whereas, the decoder stage includes an up-
sampling layer, a 2×2 convolution layer, a residual block, and an attention block.
Lastly, a softmax activation produces feature maps for each class. The utilized
loss function is a fusion of cross-entropy and generalized dice-loss functions. Seg-
mentation results were postprocessed by applying connected components analy-
sis to eliminate false positive regions from the segmented regions.
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Evaluation metric Semantic segmentation networks are evaluated quantita-
tively using the Dice similarity coefficient (DSC) and 95% of Hausdorff distance
(HD) metrics. The DSC measures the overlap of pixels between the predicted
segmentation and the ground truth. Its value ranges from 0 to 1, with 1 repre-
senting perfect similarity and 0 indicating no overlap. HD is the greatest distance
between a point in one of the two sets and its closest point in the other. The
most significant segmentation error is indicated by HD, making it one of the
most informative and helpful criteria [18]. The value falls within the range of 0
to 1, and a smaller Hausdorff95 signifies a higher segmentation quality, indicating
that the predicted brain tumor boundary closely matches the actual boundary.
DSC is defined as Equation 1 and HD is defined as Equation 2:

DSC =
2TP

FP + 2TP + FN
(1)

hd(P,G) = maxp∈P ming∈G ||p− g||2
hd(G,P ) = maxg∈G minp∈P ||p− g||2
HD(P,G) = max(hd(P,G), hd(G,P ))

(2)

Where FP , TP , and FN represent the counts of false positive, true posi-
tive, and false negative voxels, respectively. P represents the set of pixels in the
predicted tumor, with p representing the pixel in set P . Similarly, G represents
the set of pixels in the ground truth, with g representing the pixel in set G.
HD(P,G) is the hausdorff distance between the sets P and G. This measures
the greatest distance between a pixel in one set and the nearest pixel in the
other.

3.2 SD Prediction Methodology

Motivated by the work conducted by [36] on SD prediction, we generated 29
unique features derived from the TN segmentation network for training and
validation samples. The authors extracted 1265 features, including statistical,
shape, location, and texture information using wavelet and LoG filters, broadly
categorized into images and radiomics features. Wavelet filters are widely used
for image denoising. In contrast, Laplacian of Gaussian (LoG) filters, acting
as generic differential operators sensitive to local image variations like edges
or blobs, have enhanced the performance of SD prediction [9, 12]. Permutation
importance (PI) [29] and SRC were utilized as feature selection techniques. PI is
also an interpretation technique that evaluates the importance of all the features
by measuring the increase in the model’s prediction error when the value of
the specific feature is permuted or shuffled. A feature is considered significant
if altering its values increases the prediction error. It generates weights of all
the features, where higher weights signify higher contribution in SD prediction,
whereas 0 and negative define zero contribution. This provides insights into the
feature’s contribution to prediction and helps us understand its significance.
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We extracted 29 features from the ground-truth (GT ) images and an addi-
tional set from the predicted segmentation results from the TN network, and we
used it for model training. We trained distinct Random Forest regressor (RFR)
models using these feature sets. The parameters, including {number of trees,
minimum sample leaf, maximum depth, maximum features, and random state},
were fine-tuned using the grid search technique. Following that, we explored the
behavior of these features concerning the outcomes.

XAI - Post-hoc methods After training, these post-hoc methods interpret
a model’s decisions, explaining how input features influence output predictions
in complex ML models. The SHAP summary plot can derive global and local
explanations, whereas the force and waterfall plots derive local explanations from
the model. These plots visually represent the contribution of each sample to the
SD prediction. Aggregating the SHAP values allows one to find the contribution
of each feature as it considers all possible combinations of features. Further,
for each combination of features, SHAP determines a feature’s contribution by
measuring the change in the model’s prediction when the feature is included
versus when it is excluded, resulting in the SHAP value [36].

LIME can generate a local or individual interpretation of features; the core
idea behind LIME is to create an approximate linear model centered on the ex-
plained example. This approximation is achieved by generating numerous syn-
thetic examples near the explained instance, with each example weighted accord-
ing to its distance from the explained instance. Using these generated examples,
a linear regression model is built, with the coefficients serving as quantitative
indicators of the influence of individual features on the prediction.

Conversely, PDP and ALE plots serve the purpose of extracting global in-
sights from the model. PDPs calculate the average prediction of the model for
a specific feature while keeping all other features fixed. They then vary the fea-
ture of interest across a range of values to observe how it impacts the model’s
predictions [30]. Hence, PDP provides a global perspective on how the selected
feature influences the model’s output across its entire range. However, there are
two significant limitations of PDP:
– The assumption that the feature of interest is uncorrelated with other fea-

tures.
– Accumulating marginal effects across all samples, neutralizing the heteroge-

neous effects of specific feature values.

These limitations are mitigated by ALE, which computes the average change
in predictions as the feature of interest varies across its observed range. Rather
than presuming all other features are constant, ALE considers the local effects
within each segment and aggregates them across the entire feature range.

4 Results and Discussions

The DSC for segmentation results obtained from the TN network is 0.736 (ET),
0.841 (TC), 0.896 (WT) for the training set and 0.713 (ET), 0.778 (TC), 0.873
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(WT) for the validation set. The results are consistent with many 2D and 3D
UNet-based leading models [1, 3, 5].

In the context of SD prediction, the performance of the RFR models on the
training and validation set can be seen in Table 2. The RFR-GT (RFR model
trained on feature extracted from the ground-truth) model has performed better
than the RFR-TN (RFR model trained on feature extracted from Triplanar
network) model on both training and validation sets in terms of accuracy. The
RFR-TN model shows lower errors in MSE, medianSE, and stdSE than the
RFR-GT model on the training set. On the validation set, it also exhibits lower
errors in MSE and stdSE. Regarding SRC, RFR-TN model has performed better
on the training set, whereas RFR-GT performed better on the validation set.
In a broader context, the RFR-TN model consistently performs better than
RFR-GT across all the performance metrics.

Table 2: Performance evaluation on BraTS2020 training and validation datasets.
Boldface numbers indicate the best outcomes. Where MSE= mean squared error,
medianSE = median squared error, stdSE = standard deviation squared error,
SRC = Spearman ranking coefficient, RFR GT= RFR model trained on GT
feature set, and RFR TN = RFR model trained on TN feature set.

RFR-GT RFR-TN

Dataset Accuracy MSE medianSE stdSE SRC Accuracy MSE medianSE stdSE SRC

Training 0.590 59961.29 14329.44 130263.47 0.75 0.540 52490.06 13735.40 110568.72 0.84
Validation 0.607 84583.28 25863.77 149488.19 0.52 0.570 82070.60 40678.11 138345.10 0.47

a Validation results from the BraTS2020 challenge online assessment portal:
https://ipp.cbica.upenn.edu/

Since the RFR-TN model performs consistently on multiple metrics, we also
want to assess the SD prediction for the TN segmentation model. Consequently,
we generated a correlation map, visible in Fig. 4, to gain insights into the in-
formation carried by these features. These features exhibit little correlation,
indicating that each feature holds distinct and valuable information. Within this
map, correlations are confined to the range of -0.25 to +0.25, demonstrating that
these features effectively capture distinct phenotype information from tumor le-
sions. The feature list of the correlation map can be found in Supplementary
Table 1.A.2. Subsequent sections discuss further modeling of TN features using
post-hoc interpretable techniques.

4.1 Insights into Local Interpretation and Biological Linkages

In alignment with our objective, we investigated the behavior of features from
both a global and a local view (sample-wise) perspective using post-hoc in-
terpretation tools. Fig. 5 illustrates a SHAP summary plot, where the X-axis
represents the SHAP values, with their absolute values indicating their influence
on the target feature (SD) and signs indicating their role in the increase and
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Fig. 4: Correlation map of feature set derived from TN segmentation network.
(Refer to Supplementary Table 1.A.2 for features annotation.)

decrease of SD. On the Y-axis, features are arranged in increasing order of im-
portance, whereas, on the right side of the plot, the color code illustrates the
range of feature values, with high values depicted in pink and low values in blue.
Each data point (sample), categorized by its feature value (either high or low),
can be positioned along the X-axis to represent its impact on SD (whether it
leads to an increase or decrease) and the magnitude of that impact.

Observing the summary plot, Age feature is identified as the most influential
factor in predicting SD. When visualizing it on the SHAP value scale (X-axis),
higher Age values (represented by green dots) correspond to a reduction in SD
(indicated by negative SHAP values). In comparison, lower Age values (blue
dots) contribute to increased SD (indicated by positive SHAP values). Addition-
ally, the Age feature values exhibit an evenly distributed pattern. This obser-
vation is consistent with established medical knowledge emphasizing the crucial
role of age in predicting survival duration for brain tumor patients [11, 20].

Similarly, the second feature, LoG-sigma-1-0-mm-3D-Glcm-Correlation (Glcm
_corr), is a texture feature that measures the linear association between the
grayscale values of pixel pairs within an image. It plays a crucial role in im-
age analysis, characterizing and differentiating various texture patterns found
in images [48]. This feature is extensively used as a biomarker of heterogeneity
allows it to offer insights into the tumor microenvironment, assisting in tumor
classification [7, 32, 43]. Based on this plot, we can infer that a higher correla-
tion is associated with an increase in SD, whereas lower values are linked to a
reduction in SD. We argue that a low correlation indicates greater complexity
(heterogeneity) among tumor microenvironments, decreasing SD. The feature,
cent_ncr_x, represents the centroid of necrotic tumor lesions along the x-axis.
A higher value of this feature is associated with a decrease in SD. It is a well-
established fact that a tumor located in the posterior brain, particularly near the
ventricle, has a detrimental impact on the patient’s survival [23]. We can extend
this observation to the remaining features by analyzing the interplay between
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feature values, SHAP values, and the distribution of feature values. Similar to
[36], we also found dominion of Age, location-based feature (centroid of necrosis
and active tumor), first-order kurtosis, glcm correlation, and gldm dependence
variance.
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Fig. 5: The SHAP summary plots for the feature set display individual patients
as blue dots. On the X-axis, the SHAP value unique to each patient can be
observed, which signifies the influence of a particular feature on that patient’s
survival days. A larger absolute SHAP value indicates a more significant influence
on survival days. In contrast, the sign of the SHAP value indicates whether it
contributes to an increase or decrease in the average survival days. On the Y-
axis, the features are arranged in descending order of importance. The color
scheme on the right side of the plot is used to distinguish between high feature
values depicted in pink and low feature values represented in blue.

Further, to explore the behavior at the sample (local) level, we employed
the SHAP force-plot and LIME tools to visualize the feature behavior of a sam-
ple, which can be seen in Fig. 6a and Fig. 6b, respectively. The Python SHAP
(version 0.42.1) and LIME tool (version 0.2.0.1) were employed for this pur-
pose. In Fig. 6a, we displayed features whose contribution exceeds 8% (i.e., only
features with a magnitude greater than 8% of the sum of all absolute Shapley
values). Here, the size and color of the arrow signify the magnitude and di-
rection (increasing/decreasing) of contribution to SD prediction. The red color
represents an increase in SD, whereas the blue color indicates a decrease in
SD. The LIME plot illustrated in Fig. 6b shows the top five contributing fea-
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tures. Here, features and their respective value highlighted in orange indicate
an increase in SD, while those in blue signify a decrease in SD. Comparing
this Fig. 6b and Fig. 6b reveals that top-performing features i.e Glcm_corr, Age
and wavelet-LLL_firstorder_InterquartileRange each showing similar effects (in-
creasing/positive) on SD prediction. However, the other two features responsible
for reducing SD differ. Furthermore, we have included a SHAP waterfall plot for
the same sample, available in Supplementary Figure 1, which shows the top ten
features and indicates consistent behavior of features.

(a)

(b)

Fig. 6: (a) SHAP force plot for a sample illustrating features that contribute be-
yond an 8% threshold. Where f(x) represents the predicted value for this sample
from the validation set of the training data. The baseline value is the expected
value of the training set. Red-highlighted features indicate increasing SD, while
blue-highlighted ones signify decreasing SD. The arrow size represents their pre-
dictive contribution. (b) LIME plot for a sample showcasing the influence of the
top five features. Here, the predicted minimum and maximum values are shown,
with orange indicating increased SD and blue indicating decreased SD. Features
are arranged by decreasing importance.
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4.2 Insights into Global Interpretation and Biological Linkages
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Fig. 7: Plotting first four features using (a) PDP and (b) ALE to analyze global
behavior of the initial four features from SHAP summary plot. The X-axis repre-
sents feature values, whereas the vertical bar shows data distribution. The Y-axis
in the PDP plots represents the average prediction changes in SD as the chosen
feature changes. In the ALE plot, the Y-axis represents the accumulated change
in the model’s predictions as the desired feature changes while accounting for
changes in the feature displayed on the X-axis within a set range.

We have employed Sklearn (version=1.1.1) [31] PartialDependenceDisplay tool
to plot PDP and alibi (version=0.9.4) [19] ALE tool to analyze the global be-
havior of the initial four features from the SHAP summary plot (shown in Fig.
5). The PDP plot can be depicted in Fig. 7a, and the ALE plot in 7b. The
X-axis in both the plot shows features and their respective values. In contrast,
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the Y-axis in the PDP plot represents the average predicted SD as the chosen
feature varies, while other features are held constant or averaged. In the ALE
plot, the y-axis represents the accumulated local effect of the desirable feature
on the predicted SD integrated over the specified feature range.

By observing the average changes in SD plotted on the Y-axis for PDP (Fig.
7a) and the accumulated changes from ALE (Fig. 7b) plots concerning the X-
axis, we notice a consistent overall behavioral pattern for the desired features.
For example, when visualizing the Age feature in a PDP plot, the most sig-
nificant changes in the average effect, denoted on the Y-axis (SD:500), are ob-
served within the 40-50 age range (shown on the X-axis). A greater magnitude
of changes in the average effect signifies the feature’s significance in predicting
SD. This observation is similarly depicted in the ALE plot for the Age feature.
Observing the vertical bar on the X-axis indicates the distribution of feature
value. For Age feature, the distribution is even ranging from 40 to 80.

In the case of Glcm_corr, most features exhibit correlation values ranging
from 5 to 0.75, with one sample displaying a negative correlation. Similarly,
for cent_ncr_x, most centroid coordinates of necrosis regions along the X-axis
are between 7-170. Whereas for wavelet-HHH_firstorder_Kurtosis, most values
ranging from 3 to 50 indicate high (positive) kurtosis, suggesting a concentration
of the distribution toward the tails rather than the mean. In diffusion kurtosis
imaging (DKI), kurtosis is a metric for evaluating tissue microstructure, offer-
ing insights into tissue barrier complexity and cellularity [40]. Deviations from
typical kurtosis values may signal tissue integrity changes. Positive kurtosis cor-
relates with increased tissue heterogeneity in ischemia and infarction [40]. A
study found that high-grade tumors exhibited higher kurtosis values, likely due
to greater cellular density, reduced cell size, and increased complexity (hetero-
geneity) in the tumor microenvironment [47].

Lastly, we have compared our best-performing model on all the performance
metrics with the top-ranking and leading models in Table 3. The bold-faced text
shows the best results. Our proposed RFR-TN model has surpassed the leading
approach in terms of both accuracy and MSE. However, in terms of SRC, it
ranks as the second-best performer.

5 Conclusions and Future Scope

We utilized the TN network to extract features for SD prediction. As claimed
by the authors, the robustness and reliability of the feature set were achieved
by extracting 29 dominant features from the ground-truth and TN-predicted
segmented outcome to predict patient SD. We validate the effectiveness of these
features by examining correlation maps and SRC from the two variants. Ad-
ditionally, the RFR-TN model outperformed other top-performing BraTS2020
models across multiple performance metrics. Post-hoc interpretation methods
have recently become critical and widely employed tools for explaining ML mod-
els. However, diverse post-hoc interpretation methods can yield different inter-
pretations for SD prediction, raising questions about which method provides the
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Table 3: Quantitative comparison of the proposed method’s SD performance with
leading models on the BraTS2020 training and validation datasets, utilizing data
from the validation2020 leaderboard [39]. The bold-faced text shows the best
results. The method highlighted in yellow is the top-ranking approach from the
BraTS2020 challenge, while the method highlighted in grey reports results on
the BraTS2020 validation dataset NA: Not Available.

Dataset Method Accuracy MSE medianSE stdSE SRC

Training

Mckinley et al. [25] NA NA NA NA NA
Asenjo et al. [5] 0.822 55499.71 11351.02 147319.00 0.833
Bommineni et al. [8] NA NA NA NA NA
Ali et al. [3] 0.641 62305.61 05745.64 200788.00 0.632
Rajput et al. [36] 0.538 60668.61 16037.10 125873.00 0.754
RFR-TN(Proposed) 0.540 52490.06 13735.40 110568.72 0.84

Validation

Mckinley et al. [25] 0.414 098704.66 36100.00 152176.00 0.253
Asenjo et al.[5] 0.520 122515.80 70305.26 157674.00 0.130
Bommineni et al. [8] 0.379 093859.54 67348.26 102092.00 0.280
Ali et al. [3] 0.483 105079.40 37004.93 146376.00 0.134
Rajput et al. [36] 0.552 079826.24 14148.89 148288.00 0.711
RFR-TN(Proposed) 0.570 082070.60 40678.11 138345.10 0.470

most accurate post-hoc interpretability. Therefore, we cross-evaluated the visual
outcomes from various post-hoc interpretation methods for SD prediction. The
visual derivations of features from these methods were consistent, indicating the
robustness of the feature set.

We analyzed the global behavior of the feature set using SHAP, PDP, and
ALE and the local behavior using SHAP and LIME. This approach allows us to
comprehensively assess how each feature influences model predictions and pro-
vides insights into the collective impact and individual contributions of features,
enhancing our understanding of model interpretability and robustness. Moreover,
employing interpretability tools enables the extraction of human-understandable
inferences, assisting in comprehending ML black-box models. For future work,
we will test this feature set on the 3D segmentation model with explainability
tools. Various studies have substantiated the importance of integrating clinical
data such as age, gender, race, performance score, and treatment information to
predict the SD of glioma patients.
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Appendix 1.A Supplementary:
1.A.1 Supplementary Figures:
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Fig. 1: The SHAP waterfall plot for the initial ten features illustrates the behavior
of a sample from the validation set compared to the training set. Here, E[f(X)]
represents the expected (mean) value, f(x) denotes the predicted value, and the
direction of the arrow indicates whether the corresponding features contribute
to increasing or decreasing survival days.
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1.A.2 Supplementary Tables:

Table 4: Feature abbreviation from the correlation map.
Sr.
No.

Feature Name Feature
Type

Sr.
No.

Feature Name Feature
Type

1 Survival Days Clinical
Data
(CD)

16 Wavelet-HHH-Glcm-
DifferenceAverage

R

2 Age CD 17 Wavelet-HHH-Gldm-
DependenceVariance

3 LoG-sigma-1-0-mm-3D-Glcm-
Correlation

Radiomic
based
(R)

18 Wavelet-HHH-Glrlm-
RunLengthNonUniformity

R

4 cent-ncr-x Location-
based
(L)

19 Wavelet-LLL-Firstorder-
InterquartileRange

R

5 Wavelet-HHH-Firstorder-Kurtosis R 20 LoG-sigma-1-0-mm-3D-
FirstorderVariance

R

6 cent-at-x L 21 LoG-sigma-4-0-mm-3D-Glcm-
ClusterShade

R

7 cent-wb-x L 22 LoG-sigma-4-0-mm-3D-Glcm-
SumAverage

R

8 Wavelet-LLH-Firstorder-
InterquartileRange

R 23 LoG-sigma-4-0-mm-3D-Glcm-
JointEntropy

R

9 Wavelet-LLH-Firstorder-Range R 24 LoG-sigma-3-0-mm-3D-Firstorder-
Energy

R

10 Wavelet-LLH-Ngtdm-Coarseness R 25 LoG-sigma-2-0-mm-3D-
FirstorderKurtosis

R

11 Wavelet-LHL-Glcm-ClusterShade R 26 LoG-sigma-2-0-mm-3D-Glszm-
LargeAreaHighGrayLevelEmphasis

R

12 Wavelet-LHH-Firstorder-Kurtosis R 27 LoG-sigma-3-0-mm-3D-Gldm-
LowGrayLevelEmphasis

R

13 Wavelet-LHH-Firstorder-
RootMeanSquared

R 28 LoG-sigma-4-0-mm-3D-Glszm-
LargeAreaLowGrayLevelEmphasis

R

14 Wavelet-LHH-Gldm-
DependenceEntropy

R 29 LoG-sigma-2-0-mm-3D-Glrlm-
HighGrayLevelRunEmphasis

R

15 Wavelet-HLH-Gldm-
SmallDependence-
LowGrayLevelEmphasis

R 30 LoG-sigma-5-0-mm-3D-Glszm-
SmallAreaEmphasis

R


