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Abstract—Mixed Scaling Rotation COordinate Rotational DIg-
ital Computer (MSR-CORDIC) algorithm has found its applica-
tion in the areas where the rotation angles are known beforehand.
The algorithm merges the micro-rotation and scaling operations
resulting in the elimination of the overhead caused by the scaling
operation. Through this paper, an improved MSR-CORDIC
algorithm is proposed. This algorithm provides higher signal-to-
quantization-noise ratio (SQNR) performance while preserving
the features offered by the original MSR-CORDIC algorithm.
The novelty of the paper lies in redefining the amplifying factor
by multiplying the rotational sequences to the corresponding
signed-power-of-two (SPT) terms. The proposed algorithm of-
fers a better alternative to MSR-CORDIC without additional
hardware complexity.

Index Terms—Coordinate Rotational Digital Computer
(CORDIC) algorithm, Fast Fourier Transformation (FFT), Mixed
Scaling Rotation (MSR)-CORDIC, Signal to Quantization Noise
Ratio (SQNR), VLSI.

I. INTRODUCTION

COordinate Rotational DIgital Computer(CORDIC) is an
iterative arithmetic algorithm based on the principles of two
dimensional geometry. The algorithm offers simple hardware
implementation consisting of shift and add operations. It
is suitable for the computation of trigonometric and hyper-
bolic functions, multiplication and division operations and
logarithms [1], [2]. The simplicity of implementing these
mathematical operations leads to its applications in Digital
Signal Processing, such as Fast Fourier Transformation (FFT),
Eigenvalue Decomposition, Singular Value Decomposition and
QR factorization [3], [4].

The iterative nature of the conventional CORDIC algo-
rithm affects the speed of computation. Several algorithms
have been proposed in the literature such as Angle Record-
ing (AR) [5], Fast CORDIC [6], Extended Elementary Angle
Set (EEAS) [7], Modified Vector Rotational (MVR) [8], Mixed
Scaling Rotation [9] amongst others to reduce the number of
iterations. MSR-CORDIC can also be seen as the universal
vector rotational CORDIC engine encompassing aforemen-
tioned algorithms [9]. It significantly reduces the number
of iterations thereby improving the speed and enhancing
the signal-to-quantization-noise-ratio (SQNR) performance. It
offers a unique feature of allowing intermediate vectors to have
values other than unity by controlling the amplifying factor.
The algorithm can be applied to the applications where the

rotation angles are usually known beforehand.e.g. the twiddle
factor in FFT [10].

The main theme of this paper lies in redefining the amplify-
ing factor by introducing terms for representing the direction
of the rotations. It is based on the principles of geometry
consisting micro-rotations with scaling and MSR-CORDIC
algorithm. With redefined amplifying factor the optimal pa-
rameters then can be calculated similar to [9] such that norm
error and angle error are minimized at the same time. The
main contribution of this paper lies in the fact that it provides
higher SQNR performance while preserving the features of
MSR-CORDIC. A strong feature of this algorithm is that it
does not require additional hardware when compared to the
existing MSR-CORDIC implementations.

The rest of the paper is organized as follows. A brief
introduction to the MSR-CORDIC algorithm is presented next.
Section II presents the main contribution of the proposed
algorithm. Section III compares the simulation results of the
proposed algorithm with those of MSR-CORDIC. Finally,
Section IV draws the conclusions of proposed work and
includes future directions.

MSR-CORDIC Scheme

MSR-CORDIC algorithm is designed such that the rotations
and scaling operations are performed at the same time. Unlike
the conventional CORDIC, the MSR-CORDIC algorithm min-
imizes the errors in both the angle and norm. It also provides
the feature of adjusting the range of the norm. These unique
features of MSR-CORDIC provide better SQNR performance,
global solution and reduction of roundoff noise.

The algorithm 1 recalls the MSR-CORDIC scheme [9].
Various parameters are as follows: n denotes the nth iteration,
N denotes the total number of iterations, ηi(n), µj(n) ∈
{−1, 0, 1}; si(n), tj(n) ∈ {0, 1, ...., S}, where S denotes the
number of maximum shifts; I and J denotes the number of
signed-power-of-two (SPT) terms of x(n) and y(n) respec-
tively; θn is the nth elementary angle; Z(n) is the accumulative
angle, and Z(0) is 0; p̄n denotes the product of the amplifying
factors in the nth iteration, and p̄0 is 1; P denotes the scaling
factor, and Nspt is denoted as the SPT term used which is the
sum of I and J .

The design parameters si(n), tj(n), ηi(n) and µj(n) are
selected such that the angle error |Z(N)−Θ| and norm error



Algorithm 1 MSR-CORDIC Scheme
1: for n := 1 to N do
2: Perform micro-rotations and scaling

[
x(n)

y(n)

]
=


I∑

i=1

ηi(n)2−si(n) −
J∑

j=1

µj(n)2−tj(n)

J∑
j=1

µj(n)2−tj(n)
I∑

i=1

ηi(n)2−si(n)


×

[
x(n− 1)

y(n− 1)

]
(1)

3: Calculate elementary angle

θn = tan−1


J∑

j=1

µj(n)2−tj(n)

I∑
i=1

ηi(n)2−si(n)

 (2)

4: Update accumulation angle

Z(n) = Z(n− 1) + θn (3)

5: Amplifying factor in the nth rotation

pn =

√√√√√( I∑
i=1

2−si(n)

)2

+

 J∑
j=1

2−tj(n)

2

(4)

6: Product of the amplifying factor in the nth rotation

p̄n = p̄n−1 × pn (5)

7: end for
8: Scaling factor

P =

N∏
n=1

pn (6)

|1− P | are minimized at the same time; where Θ is the
targeted angle.

II. THE PROPOSED MSR-CORDIC SCHEME

Given a rotation angle θ and vector [x, y]T , the resultant
vector [x′, y′]T can be computed as follows:[

x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
(7)

The resultant angle can be decomposed of multiple angles by
using the concept of micro-rotations . Hence, (7) gets modified
to [

x′

y′

]
=

(
N∏

n=1

[
cos θn − sin θn

sin θn cos θn

])[
x

y

]
, (8)

where,

θ =

N∑
n=1

θn, (9)

N is the total number of rotations and θn is the nth rotation
angle.

The principal theme of the proposed work is to replace (8)
by scaled products such that[

x′

y′

]
=

(
N∏

n=1

[
vn cos θn −vn sin θn

vn sin θn vn cos θn

])[
x

y

]
, (10)

where, vn is the scaling factor,

θ =

N∑
n=1

θn (11)

and
N∏

n=1

vn = 1. (12)

It can be observed from (10) that scaling operation is per-
formed in parallel to the micro-rotation. It is also important
to note that the intermediate vectors may have norms other
than unity. Though, to retain the norm of the original vector,
multiplication of all the scaling factors shall be unity. The
trivial equality cos2θ+ sin2θ = 1 and (12) can be utilized to
produce

N∏
n=1

(√
(vn cos θn)2 + (vn sin θn)2

)
= 1. (13)

Further, it can be observed that there is a stark similarity
between the structure of MSR-CORDIC and the method of
micro-rotations coupled with scaling as used in (10)–(12). The
proposed novel MSR-CORDIC algorithm uses this concept
in redefining the original MSR-CORDIC. Equation (1) from
MSR-CORDIC is analogous to equation (10). Based on (13)
the amplifying and the scaling factors defined in the algo-
rithm 1 are modified as

vn =

√√√√√( I∑
i=1

ηi(n)2−si(n)

)2

+

 J∑
j=1

µj(n)2−tj(n)

2

(14)
and

V =

N∏
n=1

vn. (15)

The redefined amplifying factor contains additional terms
µj(n) and ηi(n). All the remaining equations (1)–(3) and (5)–
(6) remain the same. The summary of the same is given in
algorithm 2.

The proposed new MSR-CORDIC preserves all the features
provided by the MSR-CORDIC. It can be adopted for both
normal and generalized MSR-CORDIC schemes. Further, it
is important to note that there is no need of any additional
adders or shifters in comparison to the conventional MSR-
CORDIC schemes. The boundary condition in the proposed
scheme remains the same as of the classical scheme, i.e.
vupper = pupper, vlower = plower. With the same hardware



Algorithm 2 Proposed MSR-CORDIC scheme with weighted
amplifying factors

1: for n := 1 to N do
2: Calculate Micro-rotations and Scaling equation, Ele-

mentary angle and Accumulation angle using equations
(1), (2) and (3) respectively

3: Weighted amplifying factor in the nth rotation

vn =

√√√√√( I∑
i=1

ηi(n)2−si(n)

)2

+

 J∑
j=1

µj(n)2−tj(n)

2

(16)
4: Product of the weighted amplifying factor in the nth

rotation
v̄n = v̄n−1 × vn (17)

where,
v̄0 = 1

5: end for
6: Scaling factor

V =

N∏
n=1

vn (18)

complexity, the proposed MSR-CORDIC provides greater
SQNR performance as discussed in the next section.

III. SIMULATION RESULTS

A comparison of the proposed scheme and MSR-CORDIC
in terms of the SQNR outcome is presented in this section.
It is shown that the proposed scheme results in better SQNR
performance. The constraints are fixed in the same way as
outlined in [9] for the purpose of simplicity and fairness. An
exhaustive search for each type of constraint is carried out to
generate 512 distinct parameters sets of ηi(n), µj(n), si(n)
and tj(n).

Fig. 1. SQNR Comparison between MSR-CORDIC and the proposed scheme
.

MSR-CORDIC offers two sets of schemes, namely, Nor-
malized MSR-CORDIC and Generalized MSR-CORDIC. A
comparison between the proposed scheme and MSR-CORDIC
is presented in Fig.1 with NSPT = 4. Normalized scheme
takes any one set of (I, J) that satisfies I + J = 4, i.e.
(4, 0), (0, 4), (1, 3), (3, 1) and (2, 2). It is important to note
that sets (4, 0) and (0, 4) offer only scaling operation and
hence they are not considered for the comparison. The SQNR
performance of (1, 3) and (3, 1) are the same. Hence, only
unique combinations such as (1, 3) is taken into account for the
simulations. Unlike the normalized scheme which has the fixed
choice of combinations for (I, J), Generalized scheme selects
the combination which minimizes the angle error |Z(N)−Θ|
and norm error |1− V | the most at the same time.

The following observations can be made from Fig.1:
1) For the proposed method similar to the MSR-CORDIC,

the generalized scheme offers the better SQNR per-
formance when compared to the Normalized scheme.
Furthermore, the SQNR performance of (2, 2) is higher
when compared to (1, 3).

2) The plot shows that the proposed scheme offers higher
SQNR performance for both the schemes when com-
pared with that provided by corresponding MSR-
CORDIC counterparts.

The scaling factor in the conventional CORDIC algorithm
is fixed as per the number of iterations. Though, with other
algorithms such as AR, MVR and EEAS the scaling factor
changes with every iteration. This leads to higher roundoff
noise error and hence deteriorates SQNR performance. The
word length can be defined if range of the scaling factor is
known a priori. Thus, the roundoff noise can be reduced.
MSR-CORDIC allows to determine the range for the scaling
factor such that plower ≤ p̄n ≤ pupper holds true. The
parameter plower is fixed as 1/pupper as per the boundary
constraint explained in [9] and the same holds true for v̄n.

The analysis of SQNR performance with the change in
scaling factor is depicted in Fig. 2. The parameters are selected
as NSPT = 3, N = 3 and NSPT = 4, N = 2 for Fig. 2(a)
and Fig. 2(b) respectively. Following can be observed from
the plot:

1) Similar to MSR-CORDIC, the proposed scheme satu-
rates when vupper is 1.5.

2) The proposed scheme has better SQNR performance for
the same parameters. When vupper value reaches 1.3,
the SQNR performance of the proposed scheme is better
than the saturated SQNR value of MSR-CORDIC.

The analysis of the SQNR performance with different NSPT

is shown in Fig. 3. For a comparison of both, conventional and
proposed MSR-CORDIC schemes, the parameters are selected
as NSPT = 3 and NSPT = 4 with N = 2. It can be observed
that the performance of the higher NSPT term is better in both
the schemes. Also, the SQNR performance of the proposed
scheme is better when compared with the same NSPT term
of the other scheme.

A further observation can be made that the hardware



(a)

(b)

Fig. 2. Comparing the relationship between SQNR performance and scaling
factor value of vupper in generalized scheme of MSR-CORDIC and proposed
MSR-CORDIC. (a) NSPT = 3 and N = 3 (b) NSPT = 4 and N = 2

complexity of the proposed algorithm is the same as MSR-
CORDIC since scaling and microrotation equations for both
algorithms remain analogous. Hence, the proposed algorithm
enhances the SQNR performance without adding hardware
complexity. During the extensive and numerous simulations
runs in addition to those being reported in this paper, no
instance could be found where the proposed scheme resulted
in inferior SQNR performance than that afforded by the
conventional MSR-CORDIC algorithm.

Fig. 3. Analysis of MSR-CORDIC and proposed scheme for different
combinations of NSPT .

IV. CONCLUSIONS

An enhanced MSR-CORDIC algorithm is proposed in this
paper that employs weighted amplifying factors. The proposed
algorithm can be implemented with both, Generalized and
Normalized schemes. The algorithm provides better SQNR
performance with no added hardware complexity. A good
future direction is to perform a comparative performance
analysis of the proposed scheme with widely used CORDIC
methods and to study the possibilities of analytically deriving
optimal values of the parameters µ, η, s and t, thereby
obviating the need for extensive parameter search.
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